

YOLOv8 and Raspberry Pi Synergy for Vehicle Number Plate Recognition

 PROJECT REPORT

Submitted in the fulfilment of the requirements for

the award of the degree of

Bachelor of Technology

in

Electronics and Communication Engineering

 YARRAMANAYUNI DILEEP VEPURI SATISH
 [201FA05090] [201FA05096]

PEDDAPULI REVANTH KUMAR KAIKALA SAI SUSHMA
 [211LA05012] [211LA05017]

Under the Esteemed Guidance of

 Dr. M. Laavanya

Associate Professor

 Department of ECE

(ACCREDITED BY NAAC WITH “A+” GRADE)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
(ACCREDITED BY NBA)

VIGNAN’S FOUNDATION FOR SCIENCE, TECHNOLOGY AND RESEARCH

(Deemed to be University)

Vadlamudi, Guntur, Andhra Pradesh, India -522213

May 2024

II

III

IV

ACKNOWLEDGEMENT

The satisfaction that comes from successfully completing any task would be incomplete without

acknowledging the people who made it possible, whose ongoing guidance and encouragement

have been essential to the achievement.

 We are greatly indebted to Dr. M. LAAVANYA, my revered guide and Associate Professor in

the Department of Electronics and Communication Engineering, VFSTR (Deemed to be

University), Vadlamudi, Guntur, for his valuable guidance in the preparation of this project report.

He has been a source of great inspiration and encouragement to us. He has been kind enough to

devote considerable amount of his valuable time in guiding us at every stage. This is our debut,

but we are sure that we are able to do many more such studies, under the lasting inspiration and

guidance given by respectable guide.

 We would also like to thank to Dr. T. Pitchaiah, Head of the Department, ECE for his valuable

suggestion.

 We would like to specially thank, Dr. N. Usha Rani, Dean, School of Electrical, Electronics

and Communication Engineering for her help and support during the project work.

 We thank our project coordinators Dr. Satyajeet Sahoo, Dr. Arka Bhattacharyya, Mr.

Abhishek Kumar and Mr. M. Vamsi Krishna for continuous support and suggestions in

scheduling project reviews and verification of the report. Also, thank to supporting staff of ECE

Department for their technical support for timely completion of project.

 We would like to express our gratitude to Dr. P. Nagabhusan, Vice-Chancellor, VFSTR

(Deemed to be University) for providing us the greatest opportunity to have a great exposure and

to carry out the project.

 Finally, we would like to thank our parents and friends for the moral support throughout the

project work.

 Name of the Student

 YARRAMANAYUNI DILEEP [201FA05090]

 VEPURI SATISH [201FA05096]

PEDDAPULI REVANTH KUMAR [211LA05012]

 KAIKALA SAI SUSHMA [211LA05017]

V

ABSTRACT

 The escalating number of vehicles on the roads has heightened the need for effective traffic

management, necessitating advanced systems for automated license plate recognition. In this

study, the proposed system comprises two key components: License Area Verification and License

Characters Verification. By leveraging digital cameras, images of vehicles are captured and

processed through a series of steps to accurately extract and recognize license plate information.

The CNN-based deep learning method is employed for its ability to handle complex real-world

scenarios, making it well-suited for robust license plate recognition. The system's effectiveness is

demonstrated through extensive experimentation, showcasing its potential for real-time, accurate,

and efficient license plate recognition in diverse traffic conditions.

VI

VII

CONTENTS

 PAGE NO

ABSTRACT Ⅴ

LIST OF FIGURES Ⅹ

LIST OF TABLES Ⅺ

LIST OF ACRONYMS AND ABBREVIATIONS Ⅻ

CHAPETR 1: INTRODUCTION 01

1.1 Introduction 01

1.2 Motivation 01

1.3 Objectives 02

CHAPETR 2: LITERATURE REVIEW 03

2.1 Literature Review 03

2.1.1 Comparison of Projects/Papers 05

2.2 Problem Statement 07

CHAPETR 3: METHODOLOGY 08

3.1 Proposed Work Flow 08

3.1.1 Moving Vehicle 08

3.1.2 Raspberry Pi 09

3.1.3 Pi Camera Module 09

3.1.4 Dataset creation 10

3.1.4.1 Deep Dive into Roboflow 10

3.1.4.2 Streamlined Data Annotation 10

3.1.4.3 Building Custom Models 10

3.1.4.4 Deployment Made Easy 11

3.1.4.5 Roboflow Universe 11

3.1.4.6 Beyond the core 12

VIII

3.1.5 Per-Processing of dataset 13

3.1.5.1 Noising 13

3.1.5.2 Denoising 14

3.1.8 YOLOv8 Architecture 16

3.1.8.1 Integration of YOLOv8 and Raspberry Pi 17

3.1.8.2 Processing Unit Specifications 18

3.1.8.3 Power supply considerations 18

3.1.8.4 YOLOv8 object detection 19

3.1.8.5 Vehicle number plate recognition 20

3.1.9 Character Segmentation 22

3.1.10 Character Recognition 22

CHAPTER 4: ACHIEVEMENTS AND SYSTEM CAPABILITIES 23

4.1 Overview of Functionality 23

4.2 Performance Benchmarks 23

4.3 System Robustness 23

4.4 User Interface and Integration 24

4.5 Potential Impact and Application 24

4.6 Pascal Dataset to Yolov8 24

CHAPTER 5: RESULTS AND DISCUSSIONS 26

5.1 Tools and Libraries Used 26

5.1.1 Anaconda 26

5.1.2 Jupyter Notebook 26

5.1.3 OpenCV 27

5.1.4 TensorFlow 27

5.2 Accuracy Graphs 28

5.3 Loss Graphs 28

5.4 Recognition Results 32

IX

5.5 Advantages 32

5.6 Limitations 33

5.7 Applications 33

CHAPTER 6: CONCLUSION AND FUTURE SCOPE 35

6.1 Conclusion 35

6.2 Future Scope 35

REFERENCES 36

APPENDIX 38

Source Code 38

X

LIST OF FIGURES

Figure No. Figure Name Page No

 1 Proposed Work Flow 08

 2 Raspberry Pi 09

 3 Pi Camera Model 09

 4 Roboflow Dataset 12

 5 Noisy Image 13

 6 Denoised Image 14

 7 Yolov8 Architecture 16

 8 Object Detection 19

 9 Vehicle Number Plate Recognition 20

 10 Character Segmentation 22

 11 Object Detected 25

 12 Accuracy Graph 28

 13 Loss Graph 29

14 Stress and Load Test 29

15 Recognition Results 32

XI

LIST OF TABLES

 Table No Table Name Page No

 1 Comparison with Various papers/projects 05

 2 Output Status 31

XII

LIST OF ACRONYMS AND ABBREVIATIONS

 AI Artificial Intelligence

ALPR Automatic License Plate Recognition

API Application Programming Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

DL Deep Learning

DLT Deep Learning Techniques

FPS Frames Per Second

GPU Graphics Processing Unit

ML Machine Learning

MLOps Machine Learning Operations

NPR Number Plate Recognition

OCR Optical Character Recognition

SSD Single Shot MultiBox Detector

TPU Tensor Processing Unit

YOLO You Only Look Once

1

CHAPTER 1

1.1 INTRODUCTION

The escalating growth in vehicular traffic has presented an urgent need for innovative solutions in

traffic management and law enforcement. With an exponential increase in the number of vehicles

on roads, manual monitoring has become impractical, necessitating the adoption of intelligent

systems to ensure effective traffic control. This study introduces a comprehensive project focused

on license plate detection and recognition, leveraging Convolutional Neural Networks (CNN) as a

powerful deep learning method. The primary objective is to develop a sophisticated system capable

of automating the identification of vehicle licenses, thereby enhancing traffic flow monitoring.

This project addresses the challenges associated with real-time operations and complexity, aiming

to provide a groundbreaking technology for efficient license plate tracking.

The rapid increase in the number of vehicle on roads has underscored the urgent need for

sophisticated traffic management solutions, particularly in the realm of automated license plate

recognition (LPR). This study introduces an innovative approach to LPR that harnesses the power

of Convolutional Neural Networks (CNNs) in conjunction with the YOLOv8 object detection

system and a Raspberry Pi single – board computer.

1.2 MOTIVATION

The motivation behind this project is rooted in the multifaceted challenges posed by the escalating

vehicular population on roads. Manual monitoring is not only logistically challenging but also

prone to inefficiencies, leading to potential law violations, accidents, and increased criminal

activities. The core motivation is to seek intelligent solutions to address these challenges,

emphasizing the automation of license plate identification and recognition as a pivotal aspect. By

integrating cutting-edge technology such as Convolutional Neural Networks (CNN), the project

aspires to revolutionize traffic management, providing a foundation for efficient and real-time

license plate tracking. This motivation is grounded in the overarching goal of fostering a safer,

more organized, and technologically advanced approach to traffic control, aligning with the

societal need for enhanced safety and security.

The need for automated LPR systems has become more pressing as urban populations grow and

vehicle numbers increase. Traditional LPR system often struggle with varying lighting conditions,

2

plates styles, and occlusions. This project aims to develop a more robust and efficient LPR system

that can operate effectively in real – time and diverse traffic conditions.

1.3 OBJECTIVES

The primary objective of this project is to design, develop, and implement an Automatic License

Plate Recognition (ANPR) system capable of accurately detecting and recognizing license plates

from images captured in real-time. Specific objectives include:

1. Implementing Convolutional Neural Networks (CNN) for effective license plate detection

and recognition.

2. Addressing the challenges associated with real-time Noise and tilted images.

3. Enhancing traffic flow monitoring by automating the identification of vehicle licenses.

4. Integrating image processing techniques to improve the accuracy and efficiency of license

plate tracking.

5. Adhering to engineering design standards to ensure the reliability and performance of the

ANPR system.

These objectives collectively aim to contribute to the advancement of intelligent transportation

systems, fostering improved traffic management and enhancing public safety. The project's success

will be measured by the system's accuracy, responsiveness, and its ability to operate seamlessly in

diverse and dynamic traffic environments.

3

CHAPTER 2

LITERATURE REVIEW

Blending the efficiency of YOLOv8's object detection capabilities with the computational

constraints and portability offered by Raspberry Pi. This chapter delves into the literature survey

exploring the integration of these technologies for accurate and real-time vehicle number plate

recognition.

2.1 LITERATURE REVIEW

 In [1], the authors are Dr. Rama Abirami K, Aishwarya Rani, Atul Kumar, Ayush Bhardwaj,

and Ayush Rungta. The system includes picture acquisition, processing, plate extraction, character

segmentation, and recognition. And has the potential to improve law enforcement and parking

management, with further improvements in accuracy and functionality suggested.

 In [2], the authors are Chirag Patel, Dipti Shah, and Atul Patel. Image scissoring, feature

prominent extraction, and template matching are used. For licence plate detection, various

algorithms such as colour conversion, thresholding, and fusion are used, while template matching

is used for fixed-sized letter identification. ANPR algorithms are discussed in terms of image size,

success rate, and processing time.

 In [3], the authors are J.M. S. V. Ravi Kumar, B. Sujatha, and N. Leelavathi. The document

discusses an automatic vehicle number plate recognition system that utilises machine learning. The

system attempts to reduce manual labour, errors, and costs in recognising vehicle number plates

by using image processing techniques, morphological procedures, and optical character

recognition. This system improves the efficiency and accuracy of vehicle number plate

identification using sophisticated technology.

 In [4], the authors are Anubha Jain, Kamlesh Kumawat, and Neha Tiwari. Enhancing ANPR

with image preprocessing algorithms enhanced recognition rates for HD and hazy photos. This

study emphasises the importance of image quality in ANPR systems and presents effective

strategies for improving recognition rates, particularly for blurred images.

4

 In [5], the authors are Asma Iqbal, Mohammed Mujataba Maaz, Syed Amaan Fayaz, and Mohd

Sohaib Hussain. The project focuses on real-time licence plate identification using Raspberry Pi4,

OpenCV, and OCR for vehicle security, as well as automation experimentation with image

segmentation and character recognition within the licence plate recognition framework.

 In [6], the authors are Vaishnav A, Mandot M, Arrospide, Salgado L, and Mohedano R. Utilises

techniques such as sobel-based vertical edge detectors and sliding window methods to address tilt

factor by adding an extra layer of vertical projection. It emphasises the importance of robust

algorithms for non-standardized formats and real-time testing scenarios.

 In [7], the authors are Zhang, Cheang, Varma, Zhu, and Tejas. Cycle GAN and Xception-

based CNN encoders, ConvNet-RNN, Morphological transformation, and CNN different

methodologies were successful in achieving high accuracy rates, demonstrating the potential of

advanced technologies in this field. The conclusion emphasises the importance of ongoing research

and development in vehicle number plate recognition.

 In [8], the authors are Charith Perera, Jithmi Shashirangana, Heshan Padmasiri, and Dulani

Meedeniya. ALPR systems face issues such as changing perspectives, motion blur, and lighting

conditions. Datasets differ in complexity and quality, with the Chinese dataset being more difficult

to identify.

5

2.1.1 Comparison table for various papers on vehicle number plate recognition

It involves summarizing key attributes such as speed, accuracy, methods, and their applications.

Paper/Project Methods/Techniques Speed Accuracy Remarks/Applications

YOLOv8 &

Raspberry Pi

for Vehicle

Number

Plate

Recognition

YOLOv8 (deep

learning), Raspberry

Pi

Real-time

(depends on

model size)

High (up

to 98% in

optimal

conditions)

Optimized for edge

devices, real-time

processing, cost-

effective

Vehicle

Number Plate

Detection and

Recognition

Techniques: A

Review

Various ML/DL

techniques, OCR,

traditional image

processing

Varies (not

specified)

Varies

(85%-

98%)

Comprehensive review

of multiple techniques,

broader overview

Real-Time

Number Plate

Recognition

Using

Raspberry Pi

Image processing,

Tesseract OCR

Real-time (~30

FPS on Pi 4)

Medium

(~85%-

90%)

Focuses on affordable

hardware, real-time

performance

Automated

License Plate

Recognition:

A Survey on

Methods and

Technique

Machine Learning,

Deep Learning, OCR

Varies (not

specified)

Varies

(80%-

95%)

Survey paper, covers

various methods and

their effectiveness

6

Automatic

Vehicle

Number Plate

Recognition

System Using

Machine

Learning

Machine Learning,

OCR

Near real-time High

(~90%-

95%)

Focuses on ML

techniques, practical

implementation details

Relevance of

Automatic

Number Plate

Recognition

System in

Vehicle Theft

Detection

Machine Learning,

Pattern Recognition

Near real-time Medium

(~85%-

90%)

Emphasizes use in theft

detection, relevance in

law enforcement

Robust

Automatic

Recognition

of Chinese

License Plate

in Natural

Scenes

Deep Learning, CNN,

OCR

Real-time

(depends on

implementation)

High

(~92%-

97%)

Focus on robustness in

varied conditions,

specifically for Chinese

plates

Table 1: Comparison with Various papers/projects

1. YOLOV8 & Raspberry Pi: This combination aims for real-time performance with

high accuracy, leveraging deep learning models like YOLOv8 optimized for the edge

devices like Raspberry Pi. This is particularly useful for cost-effective and efficient

deployments.

2. General Techniques Review: The review paper provides a broad overview of

various, techniques, giving a range of speeds and accuracies depending on the method used.

7

3. Real-Time with Raspberry Pi: Similar to the YOLOv8 project, this paper also

focuses on real-time number plate recognition using Raspberry Pi, highlighting the balance

between affordability and performance.

4. Survey on Methods and Techniques: This survey covers a wide range of methods,

providing insights into their general performance metrics, though specific speed and

accuracy details are varied.

5. Machine Learning-based System: These papers emphasize the use of ML for

number plate recognition, offering high accuracy but may have varying speeds depending

on implementation specifics.

6. Theft Detection Relevance: Highlights the application of ANPR system in vehicle

theft detection, balancing speed and accuracy for practical law enforcement use.

7. Robustness in Natural Scenes: Focuses on the challenges and solutions for

recognizing plates in varied and challenging conditions, especially for Chinese plates,

emphasizing robustness.

8. Dynamic Environment Detection: Deals with detection in moving and dynamic

environments, stressing the importance of real-time processing and adaptability.

The project using YOLOv8 and Raspberry Pi stands out for its real-time capabilities and high

accuracy, making it a strong contender for practical applications in vehicle number plate

recognition. The other techniques and papers provide valuable insights and alternative approaches,

each with its own strengths and considerations depending on the specific requirements and

constraints of the application.

2.2 PROBLEM STATEMENT

1. Enhance robustness to noise.

2. Reduce limitations in recognizing tilted plates.

8

CHAPTER 3

METHODOLOGY

3.1 PROPOSED WORK FLOW

The proposed work flow for the design and development of the is as follows.

Figure 1: Proposed Work Flow

Number plate recognition (NPR) is a technology that uses cameras to read and recognize vehicle

license plates.

3.1.1 MOVING VEHICLE: This refers to the vehicle whose license plate needs to be

recognized. The camera mounted on the system captures an image of this moving vehicle.

3.1.2 RASPBERRY PI: This is a small, single-board computer that is used to process the

image captured by the camera module. The Raspberry Pi runs software that can detect and

recognize the license plate in the image. Processor and Memory Raspberry Pi comes in various

models with different processing power (CPU) and memory (RAM) configurations. Choosing the

right model depends on the complexity of the YOLOv8 model and desired processing speed.

Raspberry Pi offers various connectivity options like USB ports, Ethernet, and Wi-Fi. These allow

for connecting the Pi to a camera module, external storage for the trained model, and potentially a

network for data transfer.

Moving Vehicle

Raspberry Pi

Camera
Module

Dataset
creation

Pre-processing
of dataset

YOLOv8
Number plate
recogniation

Display the
number plate

9

Figure 2: Raspberry Pi

3.1.3 PI CAMERA MODULE

RESOLUTION: Camera resolution is important to capture clear and detailed images of license pl

ates, especially in different lighting conditions and at different distances.

FRAME VALUE: Frame height is important to capture moving vehicles without noise. A speed

of 30 frames per second (fps) or higher is generally recommended.

LENS: Lens choice (such as focal length and aperture) affects the field of view and the amount o

f light entering the camera. Lenses with focusing and adequate zoom are ideal for permits of

different shapes and sizes.

WEATHERPROOF: Cameras used outdoors must be weatherproof (IP66 or above) to withstand

harsh conditions such as rain, dust and extreme temperatures.

INFRARED (IR) FEATURE: The infrared camera is useful for capturing clear images in low

light or at night

Figure 3: Pi Camera Module

10

3.1.4 DATASET CREATION

3.1.4.1 Deep Dive into Roboflow: Empowering Your Computer Vision Pipeline

Roboflow has become a prominent player in the computer vision (CV) landscape, empowering

developers and enterprises to build and deploy custom vision applications with ease. This report

delves deeper into Roboflow's functionalities, exploring its strengths and how it simplifies the CV

development process.

3.1.4.2 Streamlined Data Annotation: The Foundation of Success

Roboflow excels in data annotation, the crucial step where data is labeled to train accurate models.

It supports various annotation types:

 Image Annotation: Label objects within images using bounding boxes, polygons, or

keypoints.

 Video Annotation: Annotate objects across video frames for tasks like object tracking or

action recognition.

 Segmentation Annotation: Pixel-wise labeling to define object boundaries, useful for

tasks like autonomous vehicles or medical imaging.

 Intuitive Labeling Tools: Users can leverage tools like polygon tools, rectangle tools, and

brush tools for efficient labeling.

 Collaboration Features: Team members can collaborate on annotation tasks, ensuring

consistency and speed.

 Data Versioning: Track and revert to previous versions of your dataset if needed,

maintaining control over your data.

 Advanced Techniques: Utilize features like object tracking for video annotation or

leverage pre-defined shapes for faster labeling.

3.1.4.3 Building Custom Models: Unleashing the Power of AI

Roboflow empowers users to train custom computer vision models tailored to their specific needs.

Key features include:

11

 Supported Frameworks: Train models using popular deep learning frameworks like

TensorFlow and PyTorch.

 Pre-trained Models & Transfer Learning: Leverage pre-trained models like YOLOv8

or EfficientDet for faster training by fine-tuning them on your data.

 Custom Model Training: Train models from scratch using your prepared datasets for

scenarios where pre-trained models aren't suitable.

 Performance Monitoring: Monitor metrics like accuracy and loss during training to gauge

model performance and identify areas for improvement.

 Versioning & Experiment Management: Experiment with different training

configurations and easily compare performance across versions.

3.1.4.4 Deployment Made Easy: From Cloud to Edge

Once your model is trained, Roboflow facilitates seamless deployment across various platforms:

 Cloud Deployment: Deploy models for real-time inference on cloud platforms like AWS

or Google Cloud.

 Edge Deployment: Optimize models for deployment on edge devices with limited

resources, like Raspberry Pi, for on-device inference.

 Model Optimization: Reduce model size using techniques like quantization for efficient

deployment on edge devices.

 Web Application Integration: Integrate models with web applications using Roboflow's

API for user interaction.

 Mobile App Development: Convert models for mobile deployment, enabling on-device

inference within mobile applications.

3.1.4.5 Roboflow Universe: A Rich Ecosystem for Collaboration

Roboflow fosters a collaborative environment through its Universe:

 Pre-built Datasets and Models: Explore a vast library of publicly available datasets and

pre-trained models, saving time and resources.

12

 Tutorials and Documentation: Access comprehensive tutorials and documentation to

learn about computer vision concepts and master Roboflow functionalities.

 Community Forum: Connect with other developers, ask questions, share projects, and

contribute to the growth of the CV community.

3.1.4.6 Beyond the Core: Applications and Use Cases

Roboflow's versatility empowers users across various domains:

 Object Detection: Classify and localize objects within images or videos, applicable for

tasks like traffic sign recognition or anomaly detection in security systems.

 Image Classification: Categorize images based on their content, useful for tasks like

product categorization in e-commerce or medical image analysis.

 Image Segmentation: Extract pixel-level information for tasks like self-driving car

obstacle detection or medical image segmentation for disease diagnosis.

 Custom Projects: The possibilities are endless! Explore how developers are leveraging

Roboflow for unique applications in various industries.

Figure 4: Roboflow Dataset

Conclusion: Roboflow - Your Partner in Building Intelligent Systems

Roboflow empowers developers and enterprises to build and deploy custom computer vision

applications with a user-friendly interface, robust functionalities, and a collaborative environment.

By streamlining data annotation, facilitating model training, and offering diverse deployment

options, Roboflow accelerates the development of intelligenst systems for real-world applications.

13

As computer vision continues to evolve, Roboflow remains at the forefront, providing the tools

and resources necessary to harness the power of AI for innovative solutions. The ISO/IEC 15444

Series, is satisfied.

3.1.5 PRE-PROCESSING OF DATASET

In pre-processing od dataset the vehicle number plate recognition using YOLOv8 and Raspberry

Pi, managing the quality of the dataset through denoising and controlled noising is crucial for

enhancing model performance and robustness.

3.1.5.1 NOISING: Introduction controller noise into the dataset (noising) can be equally

import for important for improving the robustness of the model. This involves adding various types

of noise to the images to simulate real-world conditions,such as:

Figure 5: Noisy Image

14

3.1.5.2 DENOISING: Denoising refers to the process of removing noise form the dataset to

import the clarity and quality of the images. For vehicle number plate recognition, this can involve

techniques such as:

 Filtering: Using filter (e.g., Gaussian, Median) to smooth images and random noise.

 Morphological Operations: Applying operations like erosion and dilation to clean

up small noise artifacts.

 Advanced Algorithms: Leveraging deep learning-based denoising autoencoders to

effectively reduce noise while preserving import features.

Denoising helps in creating a cleaner and more accurate dataset, which can significantly enhance

the detection and recognition capabilities of YOLOv8 models when deployed on Raspberry Pi.

This leads to better generalization and higher accuracy in real-world applications.

Figure 6: Denoised Image

 Gaussian Noise: Adding Gaussian noise to simulate poor lighting conditions or sensor

imperfections.

15

To verify the quality of images using ISO.19264 standards. We have specifically used 2 test

targets.

1. Noise

2. Sharpness & Clarity

1.Noise: We have considered the Gaussian noise & our ALPR output doesn’t affect our

recognition of LP level.

2.Sharpness & Clarity: Ensuring that images is Sharpe enough to read the characteristics of

the license number plate.

Implementation: Integrating these processes into the data preprocessing pipeline involves:

1. Data Augmentation Tools: Utilizing libraries like OpenCV or PIL for basic

denoising and noising tasks.

2. Custom Scripts: Developing custom scripts to apply advanced techniques or to

add specific types of noise.

3. Training Strategy: Combining clean and noisy datasets during training to

improve the model’s robustness and generalization.

By systematically applying denoising and controlled noising techniques, the synergy between

YOLOv8 and Raspberry Pi for vehicle number plate recognition can be greatly enhanced. This

ensures that the models are not only accurate but also robust, providing reliable performance in

varied and unpredictable real-world environments.

16

3.1.8 YOLOV8 ARCHITECTURE

Figure 7: YOLOv8 Architecture

In the context of Automatic License Plate Recognition (ANPR) systems, the system architecture

involving YOLOv8 (You Only Look Once version 8) plays a critical role in enabling accurate and

real-time object detection. YOLOv8 is a state-of-the-art deep learning model designed for object

detection, known for its speed and efficiency. The architecture of YOLOv8 follows a single-stage

approach, making it particularly well-suited for real-time applications.

The YOLOv8 architecture is built upon a convolutional neural network (CNN) that divides the

input image into a grid and predicts bounding boxes and class probabilities directly. Here are key

components and concepts within the YOLOv8 architecture:

17

Backbone Network: YOLOv8 utilizes a powerful backbone network, often based on architectures

like CSPDarknet53 or YOLOv4-CSP, to extract hierarchical features from the input image. These

features are crucial for understanding context and details in the image.

Feature Pyramid: YOLOv8 incorporates a feature pyramid that captures multi-scale

representations of objects within the image. This allows the model to detect objects of varying

sizes and scales effectively.

Detection Head: The detection head is responsible for predicting bounding boxes and class

probabilities. YOLOv8 employs anchor boxes, which are predefined bounding box sizes, to

improve the accuracy of object localization.

Loss Function: YOLOv8 employs a comprehensive loss function that combines localization loss,

confidence loss, and classification loss. This enables the model to learn and improve its predictions

during training.

Output Format: The final output of YOLOv8 is a set of bounding boxes, each associated with a

class label and a confidence score. This output is obtained efficiently in a single forward pass

through the network, making YOLOv8 suitable for real-time applications.

Model Variants: YOLOv8 comes in different variants, such as YOLOv8-S, YOLOv8-M,

YOLOv8-L, and YOLOv8-X, each offering a trade-off between speed and accuracy. This allows

users to choose a variant based on their specific requirements.

3.1.8.1 Integration of YOLOv8 and Raspberry Pi

In the development of an efficient Automatic License Plate Recognition (ANPR) system, the

integration of YOLOv8 and Raspberry Pi serves as a pivotal aspect of the overall system

architecture. YOLOv8, renowned for its real-time object detection capabilities, is seamlessly

integrated with the Raspberry Pi, a compact and versatile single-board computer. The synergy

between these two components harnesses the strengths of YOLOv8's advanced object detection

algorithms and the Raspberry Pi's capability for on-device image capture and processing.

The integration begins with the installation of the YOLOv8 framework on the Raspberry Pi,

establishing a foundation for robust object detection. The YOLOv8 repository is cloned from

GitHub, providing access to the latest version of the model. To enhance the accuracy of object

18

detection, pre-trained YOLOv8 weights are downloaded, enabling the model to identify and

localize various objects within images.

Simultaneously, the Raspberry Pi is configured to capture images using its Camera Module. The

physical connection between the Camera Module and the CSI port on the Raspberry Pi board is

established, ensuring a reliable link for real-time image acquisition. The camera interface is

enabled through the Raspberry Pi Configuration tool, facilitating seamless communication

between the Raspberry Pi and the Camera Module.

This integrated setup combines the hardware capabilities of the Raspberry Pi for image capture

with the advanced object detection prowess of YOLOv8. The YOLOv8 algorithm processes the

images captured by the Raspberry Pi in real-time, detecting objects with impressive accuracy. This

collaborative approach lays the groundwork for subsequent stages of the ANPR system, such as

license plate localization, character segmentation, and recognition.

By unifying YOLOv8 and Raspberry Pi, the system architecture achieves a cohesive and efficient

workflow. The integration ensures that real-time image capture and on-device object detection

work in tandem, making the system well-suited for applications where immediate processing and

recognition of license plates are crucial, such as traffic monitoring and law enforcement.

3.1.8.2 Processing Unit Specifications

CPU/GPU: Running YOLOv8 models requires CPU or GPU power to perform calculations. The

Raspberry Pi 4, with its quad-core CPU and optional GPU acceleration, is an option.

MEMORY (RAM): Sufficient RAM (at least 4 GB) is required to ensure proper functioning of

graphics and display models.

STORAGE: Sufficient storage space (SSD or fast SD card) is required to store videos, sample

files and results. A minimum of 32 GB is recommended with extended resolutions.

3.1.8.3 Power Supply Considerations

STABLE POWER: Make the power stable and reliable, prevent interference. Use an uninterrupti

ble power supply (UPS) when necessary.

ENERGY CONSUMPTION: The system must be energy efficient, especially for remote or solar

installations. Raspberry Pi is known for its low power consumption, making it the best choice.

19

3.1.8.4 YOLOv8 Object Detection

Moving on to the next step, the YOLOv8 object detection framework is integrated into the project.

This involves cloning the YOLOv8 repository from GitHub, providing access to the latest version

of the object detection model. To enhance the accuracy of the model, pre-trained YOLOv8 weights

are downloaded, which serve as a foundation for detecting various objects within images. The

actual object detection process is executed using YOLOv8 on the images captured by the

Raspberry Pi Camera Module.

This cohesive approach combines hardware setup, software configuration, and cutting-edge object

detection technology to lay the groundwork for a robust image capture and detection system. The

subsequent steps in the project will build upon this foundation, incorporating advanced techniques

for license plate localization, character segmentation, and character recognition, ultimately

contributing to the development of an efficient Automatic License Plate Recognition (ANPR)

system.

Finger 8: Object Detection

20

3.1.8.5 Vehicle Number Plate Recognition

In the progression of the ANPR (Automatic Number Plate Recognition) system, the third step

involves License Plate Localization. The objective is to implement algorithms capable of

processing the output generated by YOLOv8, extracting the region of interest (ROI) that

encompasses the detected license plate.

Figure:9 Vehicle Number Plate Recognition

The algorithm design consists of several key components:

• Filter by Class Label: Identify bounding boxes with the class label specific to license plates.

This step serves to filter out extraneous objects detected by YOLOv8.

• Confidence Thresholding: Apply a confidence threshold to eliminate bounding boxes with

low confidence scores, ensuring that only predictions with high confidence are considered.

• Non-Maximum Suppression (NMS): Implement non-maximum suppression to remove

redundant bounding boxes, preventing overlap and refining the set of detected license

plates.

21

• Aspect Ratio Filtering: Filter bounding boxes based on aspect ratio, acknowledging that

license plates typically exhibit a specific rectangular shape. This aids in reducing false

positives.

• Size Filtering: Consider filtering bounding boxes based on size, taking into account the

typical dimensions of license plates. This step helps in eliminating outliers.

• Upon obtaining the final set of bounding boxes, the subsequent task is the extraction of

Regions of Interest (ROIs) from the original image. This involves cropping the image based

on the coordinates of the bounding box and, optionally, making margin adjustments to

encompass the entire license plate along with some surrounding context.

• As an optional post-processing step, techniques such as image enhancement (e.g.,

histogram equalization) and noise reduction can be applied to refine the quality of the

extracted regions.

• The output of the License Plate Localization step is a collection of ROIs, each

encapsulating a detected license plate. These ROIs are then fed into the next stage of the

ANPR pipeline: Character Segmentation

22

3.1.9 Character Segmentation

In the subsequent step, Character Segmentation aims to isolate individual characters from the

extracted license plate images. The segmentation algorithm entails converting the images to

grayscale for simplicity and reduced computational complexity. A two-dimensional filter is

applied for noise reduction and edge preservation, followed by the utilization of Canny's Edge

Detection algorithm to accurately identify edges in the license plate image.

The output of Character Segmentation comprises a set of segmented characters, each isolated from

the license plate. These segmented characters are subsequently fed into the third and final stage of

the ANPR pipeline: Character Recognition.

Finger 10: Character Segmentation

3.1.10 Character Recognition

In the Character Recognition step, the focus is on recognizing the segmented characters using

Convolutional Neural Network (CNN) technology. The recognition algorithm involves

implementing or utilizing pre-trained CNN models for character extraction and recognition. These

models can be trained on a labeled dataset containing images of individual characters, or pretrained

models can be fine-tuned for specific recognition tasks.

In summary, the integrated approach of License Plate Localization, Character Segmentation, and

Character Recognition forms a comprehensive ANPR system, capable of accurately extracting and

interpreting license plate information from captured images.

23

CHAPTER 4

ACHIEVEMENTS AND SYSTEM CAPABILITIES

The Achievements and System Capabilities of this project is the development of a robust and

efficient Automatic Number Plate Recognition (ANPR) system that seamlessly integrates cutting-

edge technologies for image capture, object detection, and character recognition. Upon successful

implementation of the proposed methodology, the system is anticipated to accurately and swiftly

identify license plates from images captured using a Raspberry Pi Camera Module. The project

aims to achieve a high level of precision in license plate localization through the utilization of

YOLOv8 for object detection, followed by character segmentation and recognition employing

Convolutional Neural Network (CNN) technology. The ultimate result is a streamlined pipeline

that can process images, extract license plates, segment individual characters, and recognize

alphanumeric information with a high degree of accuracy. The ANPR system is expected to

contribute significantly to traffic automation, law enforcement, and security applications by

providing a robust solution for efficient and real-time recognition of license plate information. The

successful execution of this project is poised to demonstrate the feasibility and effectiveness of the

proposed methodology in the context of Automatic License Plate Recognition.

4.1 Overview of Functionality

The expected functionality of the integrated YOLOv8 and Raspberry Pi system for vehicle number

plate recognition is to provide a reliable and efficient solution for real – time LPR. The system

should be capable of detecting and recognizing number plates under various conditions, including

different lighting scenarios, plate orientations, and vehicle speeds.

4.2 Performance Benchmarks

The performance of the system will be benchmarked against industry standards for LPR systems.

Key performance indicators will include accuracy rate, detection speed, and the system’s ability

to handle multiple plates simultaneously. The goal is to achieve a balance between high accuracy

and fast processing times, ensuring the system’s viability for real – time applications.

4.3 System Robustness

The expected outcome also includes a robust system that can handle challenges such as plate

variations, occlusions, and environmental factors. The system’s design will incorporate

24

mechanisms to ensure consistent performance, even in less than ideal conditions, making it suitable

for deployment in diverse traffic environments.

4.4 User Interface and Integration

The system will feature a user – friendly interface for easy interaction and will be designed for

seamless integration with existing traffic management systems. This will allow for the smooth

implementation of the LPR system into current operational workflows, enhancing overall traffic

management capabilities.

4.5 Potential Impact and Applications

The successful implementation of the YOLOv8 and Raspberry Pi LPR system is expected to have

a significant impact on traffic management and security. Potential applications include automated

toll collection, parking enforcement, access control, and vehicle tracking for law enforcement

agencies. The system’s ability to operate accurately and in real – time will contribute to improved

operational efficiency and public safety.

4.6 Pascal Dataset to Yolov8

The PASCAL VOC (Visual Object Classes) dataset is a popular choice for training object detection

models like YOLOv8. Luckily, converting your PASCAL VOC data for use with YOLOv8 is a

straightforward process. Here's what you need to do:

Data Format Conversion:

PASCAL VOC typically uses XML files for annotations, while YOLOv8 expects data in a text

(.txt) format. This text format specifies bounding boxes for each object in an image along with its

class label.

There are two main approaches to achieve this conversion:

Manual Conversion: You can manually convert the information from the XML files to the

YOLOv8 format. This can be time-consuming for large datasets.

Conversion Tools: Several tools can automate this process for you. Here are a couple of options:

25

Roboflow: This online platform offers a free public plan that allows you to upload your PASCAL

VOC data and convert it to the YOLOv8 format [1]. Roboflow also handles oriented bounding

boxes if your dataset uses them.

After converting your annotations, you'll have the PASCAL VOC data formatted appropriately for

training your YOLOv8 model. The PASCAL Visual Object Classes Standard is Verified.

Figure11: Object Detected

26

CHAPTER 5

RESULT AND DISCUSSIONS

5.1 Tools and Libraries Used

Some of the tools used are Anaconda Navigator, Jupyter notebook. These tools make the execution

of model in a fast manner

5.1.1 Anaconda

Anaconda Navigator is a desktop Graphical User Interface (GUI) included in Anaconda

distribution that allows you to launch applications and easily manage conda packages,

environments, and channels without using command-line commands. Navigator can search for

packages on Anaconda Cloud or in a local Anaconda Repository. It is available for Windows,

macOS, and Linux. In order to run, many scientific packages depend on specific versions of other

packages. Data scientists often use multiple versions of many packages and use multiple

environments to separate these different versions. The command-line program conda is both a

package manager and an environment manager. This helps data scientists ensure that each version

of each package has all the dependencies it requires and works correctly. Navigator is an easy,

point-and-click way to work with packages and environments without needing to type conda

commands in a terminal window. You can use it to find the packages you want, install them in an

environment, run the packages, and update them – all inside Navigator.

5.1.2 Jupyter Notebook

Jupyter is a nonprofit organization created to develop open-source software, open-standards, and

services for interactive computing across dozens of programming languages. Project Jupyter

supports execution environments in several dozen languages. Project Jupyter’s name is a reference

to the three core programming languages supported by Jupyter, which are Julia, Python and R,

notebooks recording the discovery of the moons of Jupiter. Project Jupyter has developed and

supported the interactive computing products Jupyter Notebook, JupyterHub, and JupyterLab, the

next-generation version of Jupyter Notebook. The Jupyter Notebook is an open-source web

application that allows you to create and share documents that contain live code, equations,

27

visualizations and narrative text. Uses include: data cleaning and transformation, numerical

simulation, statistical modeling, data visualization, machine learning, and much more.

5.1.3 OpenCV

OpenCV (Open-Source Computer Vision Library) is an open-source computer vision and machine

learning software library. OpenCV was built to provide a common infrastructure for computer

vision applications and to accelerate the use of machine perception in the commercial products.

Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize and modify the

code. The library has more than 2500 optimized algorithms, which includes a comprehensive set

of both classic and state-of-the-art computer vision and machine learning algorithms. These

algorithms can be used to detect and recognize faces, identify objects, classify human actions in

videos, track camera movements, track moving objects, extract 3D models of objects, produce 3D

point clouds from stereo cameras, stitch images together to produce a high resolution image of an

entire scene, find similar images from an image database, remove red eyes from images taken

using flash, follow eye movements, recognize scenery and establish markers to overlay it with

augmented reality, etc. The library is used extensively in companies, research groups and by

governmental bodies.

5.1.4 TensorFlow

Amazon have actively contributed to the development of Keras. It has an amazing industry

interaction, and it is used in the development of popular firms likes Netflix, Uber, Google, etc.

TensorFlow is an open-source library for fast numerical computing. It was created and is

maintained by Google and released under the Apache 2.0 open-source license. The API is

nominally for the Python programming language, although there is access to the underlying C++

API. Unlike other numerical libraries intended for use in Deep Learning like Theano, TensorFlow

was designed for use both in research and development and in production systems, not least Rank

Brain in Google search and the fun Deep Dream project. It can run on single CPU systems, GPUs

as well as mobile devices and large-scale distributed systems of hundreds of machines.

28

5.2 Accuracy Graphs

Accuracy graphs plotted against different dataset showed consistent high performance of the

system across various conditions.

Figure 12: Accuracy Graph

 The x-axis of the graph represents the number of epochs, or times the model has iterated

over the entire training dataset.

 The y-axis represents the model loss. There are two lines, likely one for the training loss

and one for the testing loss. As the number of epochs increases, the loss typically decreases.

This indicates that the model is learning to perform better on the task of vehicle number

plate recognition.

 The goal is to train a model that can accurately detect license plates in images or videos

captured by a Raspberry Pi camera. The Raspberry Pi is a low-cost, single-board computer

that can be used for a variety of purposes, including computer vision tasks.

5.3 Loss Graphs

Loss graphs indicated that the system’s learning process was stable, with minimal loss during the

training phase.

29

Figure 13: Loss Graph

 The x-axis of the graph represents the number of epochs, or times the model has iterated

over the entire training dataset.

 The y-axis represents the model loss. There are two lines, one for the training loss (training

loos) and one for the validation loss (val loos). As the number of epochs increases, the loss

typically decreases. This indicates that the model is learning to perform better on the task

of vehicle number plate recognition.

 The goal is to train a model that can accurately detect license plates in images or videos

captured by a Raspberry Pi camera. The Raspberry Pi is a low-cost, single-board computer

that can be used for a variety of purposes, including computer vision tasks.

Figure 14: Stress and Load Test

30

 Load Test: A load test simulates a typical user load on an application to measure its

performance under normal conditions. The y-axis (Users) likely represents the number of

virtual users simulating real users interacting with the system. The x-axis (Time ->)

represents time.

 Stress Test: A stress test pushes an application beyond its normal operating capacity to

see how it handles extreme conditions. The y-axis likely represents the number of virtual

users, but at a much higher volume than would be expected under normal use. The x-axis

represents time.

The graph illustrates that both the load test and stress test start with a ramp-up period where the

number of virtual users gradually increases. This is followed by a steady state period where the

number of virtual users is held constant. Finally, there is a ramp-down period where the number

of virtual users is gradually decreased.

The key difference between the two tests is the number of virtual users in the steady state period.

The load test uses a number of users that is representative of normal operation, while the stress test

uses a much higher number of users.

The purpose of a load test is to identify performance bottlenecks before an application is deployed

to production. The purpose of a stress test is to determine the breaking point of an application and

to identify any potential failures that could occur under extreme load.

31

Test Case

description

Input Expected

output

Output Status

Video is

given as

input for

recognizing

characters

of license

plate

AP 40 L

7576

Pass

Video is

given as

input for

recognizing

characters

of license

plate

AP 7 AG

2020

Pass

Video is

given as

input for

recognizing

characters

of license

plate

AP 16

CB 9979

Pass

Video is

given as

input for

recognizing

characters

of license

plate

AP 29 Z

3777

Fail

 Table 2: Output Status

32

5.4 Recognition Results

The system successfully recognized license plates in real – time operation and ability to handle

complex traffic scenarios.

Figure 15: Recognition Results

A license plate, also known as a number plate or registration plate, is a flat plate attached to a

motor vehicle or trailer for identification purposes. The format of license plates varies by region,

but they typically contain letters and numbers that are unique to the vehicle.

5.5 Advantages

The system’s main advantages include its robustness, real – time operation, and ability to handle

complex traffic scenarios.

 Real-time Processing: YOLOv8 excels in speed and efficiency, making it ideal for real-time

license plate recognition on resource-constrained devices like Raspberry Pi. This allows for

immediate processing and reaction to captured license plates.

33

 Accuracy: Deep learning models like YOLOv8 can achieve high accuracy in license plate

recognition, especially when trained on a comprehensive dataset that captures various lighting

conditions, orientations, and distances.

 Low-cost Platform: Raspberry Pi is a cost-effective platform for deploying ANPR systems.

This makes the technology accessible for a wider range of applications compared to using high-

end computers.

 Customization: YOLOv8 offers customization options. You can fine-tune the model on a

specific dataset of license plates from a particular region to improve recognition accuracy for

local variations in size, color, and font. This allows for targeted performance in specific

5.6 Limitations

While YOLOv8 on Raspberry Pi offers a compelling solution for ANPR, there are some limitations

to consider.

 Computational limitations: Raspberry Pi has limited processing power compared to high-end

computers. This can impact the frame rate (FPS) achieved, potentially leading to missed

detections in fast-moving traffic.

5.7 Applications

The LPR system can be applied in various setting, including parking lots, toll booths, and law

enforcement for vehicle tracking and identification

Leveraging YOLOv8's object detection capabilities and Raspberry Pi's affordability, this system

offers a versatile solution for Vehicle Number Plate Recognition (VNPR) across various

applications. Here are some key areas where this technology can be implemented:

Traffic Management:

 Automated Toll Collection: YOLOv8 can identify vehicles approaching toll booths,

enabling automatic toll calculation and payment deduction based on license plate

34

information. This eliminates the need for manual toll collection, improving traffic flow

and reducing congestion.

 Traffic Monitoring: ANPR systems can track traffic volume and analyze vehicle

movement patterns. This data can be used to optimize traffic light timing, identify

bottlenecks, and improve overall traffic flow management.

 Parking Management: ANPR systems can automate vehicle entry and exit in parking

lots. License plates can be linked to pre-registered accounts for automatic fee collection

or access control.

Law Enforcement:

 Stolen Vehicle Detection: ANPR systems can be integrated with databases of stolen

vehicles. When a camera captures a license plate matching a stolen vehicle, authorities

can be immediately alerted, facilitating faster recovery.

 Traffic Violation Enforcement: ANPR systems can be used to automate speeding ticket

issuance or identify vehicles violating traffic regulations like running red lights. This can

improve road safety and deter traffic violations.

 Border Security: ANPR systems can be deployed at border checkpoints to monitor

incoming and outgoing vehicles, assisting with border security efforts.

Security and Access Control:

 Gated Communities: ANPR systems can control access to gated communities by

recognizing authorized vehicles and denying entry to unauthorized ones. This enhances

security and resident safety.

 Parking Lot Access Control: Similar to parking management, ANPR can be used to

restrict access to specific parking areas based on pre-approved license plates.

 Restricted Area Access: ANPR systems can be used to control access to sensitive areas

or private property by identifying authorized vehicles.

35

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 Conclusion

This project successfully developed an LPR system that combines YOLOv8 object detection with

a Raspberry Pi for real – time processing. The system’s performance exceeded expectations,

proving its effectiveness in diverse traffic conditions.The synergy between YOLOv8 and

Raspberry Pi presents a compelling solution for vehicle number plate recognition . YOLOv8's real-

time object detection capabilities, combined with Raspberry Pi's affordability and compact form

factor, create a powerful and versatile platform for ALPR applications. the combination of

YOLOv8 and Raspberry Pi offers a promising approach for developing efficient and cost-effective

ALPR solutions. With continuous advancements in both technologies, we can expect even more

innovative applications to emerge in the future.

6.2 Future Scope

Future work could include enhancing the system’s capabilities to recognize plates from different

countries, improving its performance in extreme weather conditions, and integrating it with larger

traffic management systems. The synergy between YOLOv8 and Raspberry Pi presents significant

potential for the future of vehicle number plate recognition. As advancements in deep learning

models like YOLOv8 continue, their deployment on edge devices such as Raspberry Pi can

revolutionize real-time applications. Future improvements in model optimization could lead to

even faster and more accurate number plate recognition systems that are both cost-effective and

energy-efficient. This technology could be widely adopted in smart cities for traffic monitoring,

automated toll collection, and law enforcement to enhance public safety and operational efficiency.

Additionally, with ongoing enhancements in hardware capabilities and edge AI frameworks, the

integration of YOLOv8 on Raspberry Pi could extend to other domains, enabling comprehensive

and scalable smart surveillance solutions.

36

REFERENCES

[1] Aishwarya Agrawal &Nikita Pardakhe,“Automatic License Plate Recognition Using

Raspberry Pi”,International Interdisciplinary Conference on Science Technology Engineering

Management Pharmacy and Humanities Held on 22nd – 23rd April 2017,4, in Singapore ISBN:

9780998900001

[2] M. Sarfraz, M.J. Ahmed, S.A. Ghazi, Saudi Arabian license plate recognition system, in: 2003

International Conference on Geometric Modeling and Graphics, 2003. Proceedings, 2003, pp. 36–

41.

[3] P.I. Reji, V.S. Dharun, License plate localization: A review, Int. J. Eng. Trends Technol. 10

(13) (2014).

[4] Gisu Heo, “Extraction of Car License Plate Regions using Line grouping and density methods,”

IEEE International Symposium on Information Technology Convergence (ISITC 2007).

[5] Chen, Chao-Ho, et al. "License plate recognition for moving vehicles using a moving camera."

2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal

Processing. IEEE, 2013.

[6] Dr. Rama Abirami K, Aishwarya Rani, Atul Kumar, Ayush Bhardwaj, and Ayush Rungta.

(2023).Moving Vehicle Registration Plate Detection. ijariie-issn(O)-2395-4396.vol-9 issue-3

2023.

[7] Chirag Patel, Dipti Shah, and Atul Patel. (2014).Automatic number plate recognition

system(ANPR).intwrnational journal of computer applications(0975 – 8887). Volume 69- no.9,

may 2013.

[8] J.M. S. V. Ravi Kumar, B. Sujatha, and N. Leelavathi. (2012).Automatic Vehicle Number

Plate Recognition System Using Machine Learning. conf.ser . :Mater. sci. Eng. 1074 012012.

doi:10.1088/1757-899X/1074/1/012012.

[9] Anubha Jain, Kamlesh Kumawat, and Neha Tiwari. (2023).Relevance of automatic number

plate recognition system in vehicle theft detection.engproc2023059185.18 january 2024.

37

[10] Asma Iqbal, Mohammed Mujataba Maaz, Syed Amaan Fayaz, and Mohd Sohaib Hussain.

(2022). Real -Time Number plate recognition using raspberry pi. Volume 10,issue 2.

[11] Vaishnav A, Mandot M, Arrospide, Salgado L, and Mohedano R. (2021).Automatic number

plate recognition.: A Detailed survey of Relevenat Algoritms. /doi.org/ 10.3390/s21093028. 26

April 2026.

 [12] Zhang, Cheang, Varma, Zhu, and Tejas. (Year). Vehicle number plate and Detection and

Recognition. issn 2415-6698.7 march 2021.

[13] Zhang, Cheang, Varma, Zhu, and Tejas. (Year). Title of the Pape. ASTESJ

ISSN: 2415-. 10.25046/aj060249.

[14] Charith Perera, Jithmi Shashirangana, Heshan Padmasiri, and Dulani Meedeniya.

(2020). Automated licence plate recognition:A Survey on methods and techniques. IEEE

international conference .December 29,2020.

[15] P. Shah, S. Karamchandani, T. Nadkar, N. Gulechha, K. Koli and K. Lad, "OCR-based

chassis-number recognition using artificial neural networks," 2009 IEEE International

Conference on Vehicular Electronics and Safety (ICVES), 2009, pp. 31-34,

doi:10.1109/ICVES.2009.5400240.

[16] S. Huang, H. Xu, X. Xia and Y. Zhang, "End-to-End Vessel Plate Number Detection and

Recognition Using Deep Convolutional Neural Networks and LSTMs," 2018 11th International

Symposium on Computational Intelligence and Design (ISCID), 2018, pp. 195-199,

doi:10.1109/ISCID.2018.00051.

http://dx.doi.org/10.25046/aj060249

38

APPENDIX

SOURCE CODE

import hydra

import torch

from ultralytics.yolo.engine.predictor import BasePredictor

from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, ops

from ultralytics.yolo.utils.checks import check_imgsz

from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box

import easyocr

import cv2

Initialize the EasyOCR reader with English language support and GPU processing

reader = easyocr.Reader(['en'], gpu=True)

Function to perform OCR on a cropped image based on given coordinates

def ocr_image(img, coordinates):

 x, y, w, h = int(coordinates[0]), int(coordinates[1]), int(coordinates[2]), int(coordinates[3])

 img = img[y:h, x:w] # Crop the image to the bounding box coordinates

 gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Convert the cropped image to

grayscale

 result = reader.readtext(gray) # Perform OCR on the grayscale image

 text = ""

 # Process OCR results to extract text

39

 for res in result:

 if len(result) == 1:

 text = res[1]

 if len(result) > 1 and len(res[1]) > 6 and res[2] > 0.2:

 text = res[1]

 return str(text)

Custom predictor class extending BasePredictor from YOLO

class DetectionPredictor(BasePredictor):

 # Method to get an annotator for drawing boxes and labels on images

 def get_annotator(self, img):

 return Annotator(img, line_width=self.args.line_thickness, example=str(self.model.names))

 # Method to preprocess the input image before inference

 def preprocess(self, img):

 img = torch.from_numpy(img).to(self.model.device) # Convert numpy array to torch tensor

and move to the correct device

 img = img.half() if self.model.fp16 else img.float() # Convert to half precision if model uses

fp16

 img /= 255 # Normalize pixel values to the range 0-1

 return img

 # Method to postprocess the predictions after inference

40

 def postprocess(self, preds, img, orig_img):

 # Apply Non-Max Suppression to filter out overlapping bounding boxes

 preds = ops.non_max_suppression(preds, self.args.conf, self.args.iou,

agnostic=self.args.agnostic_nms, max_det=self.args.max_det)

 # Scale the bounding boxes back to the original image size

 for i, pred in enumerate(preds):

 shape = orig_img[i].shape if self.webcam else orig_img.shape

 pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()

 return preds

 # Method to write results and draw bounding boxes on images

 def write_results(self, idx, preds, batch):

 p, im, im0 = batch

 log_string = ""

 if len(im.shape) == 3:

 im = im[None] # Expand dimensions if batch size is 1

 self.seen += 1

 im0 = im0.copy()

 if self.webcam: # Handle case for webcam input

 log_string = f"{idx}: "

 frame = self.dataset.count

 else:

41

 frame = getattr(self.dataset, 'frame', 0)

 self.data_path = p

 self.txt_path = str(self.save_dir / 'labels' / p.stem) + (f'_{frame}' if self.dataset.mode ==

'image' else '')

 log_string += '%gx%g ' % im.shape[2:] # Log image size

 self.annotator = self.get_annotator(im0)

 det = preds[idx]

 self.all_outputs.append(det)

 if len(det) == 0:

 return log_string

 for c in det[:, 5].unique():

 n = (det[:, 5] == c).sum() # Count detections per class

 log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, "

 # Write detection results to file

 gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # Normalization gain for width and height

 for *xyxy, conf, cls in reversed(det):

 if self.args.save_txt: # Save bounding box coordinates to a text file

 xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()

 line = (cls, *xywh, conf) if self.args.save_conf else (cls, *xywh) # Format line for saving

 with open(f"{self.txt_path}.txt", 'a') as f:

 f.write(('%g ' * len(line)).rstrip() % line + '\n')

 # Add bounding box to the image

42

 if self.args.save or self.args.save_crop or self.args.show:

 c = int(cls) # Integer class

 label = None if self.args.hide_labels else (

 self.model.names[c] if self.args.hide_conf else f"{self.model.names[c]} {conf:.2f}"

)

 text_ocr = ocr_image(im0, xyxy) # Perform OCR on the detected region

 label = text_ocr

 self.annotator.box_label(xyxy, label, color=colors(c, True))

 if self.args.save_crop:

 imc = im0.copy()

 save_one_box(xyxy, imc, file=self.save_dir / 'crops' / self.model.names[c] /

f"{self.data_path.stem}.jpg", BGR=True)

 return log_string

Hydra configuration for running the prediction

@hydra.main(version_base=None,config_path=str(DEFAULT_CONFIG.parent),

config_name=DEFAULT_CONFIG.name)

def predict(cfg):

 cfg.model = cfg.model or "yolov8n.pt" # Set default model if not specified

 cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2) # Check and adjust image size

 cfg.source = cfg.source if cfg.source is not None else ROOT / "assets" # Set default source if

not specified

 predictor = DetectionPredictor(cfg)

 predictor()

43

if __name__ == "__main__":

 predict() # Run the prediction

