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ABSTRACT 

  

          The escalating number of vehicles on the roads has heightened the need for effective traffic 

management, necessitating advanced systems for automated license plate recognition. In this 

study, the proposed system comprises two key components: License Area Verification and License 

Characters Verification. By leveraging digital cameras, images of vehicles are captured and 

processed through a series of steps to accurately extract and recognize license plate information. 

The CNN-based deep learning method is employed for its ability to handle complex real-world 

scenarios, making it well-suited for robust license plate recognition. The system's effectiveness is 

demonstrated through extensive experimentation, showcasing its potential for real-time, accurate, 

and efficient license plate recognition in diverse traffic conditions.  
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CHAPTER 1  

1.1 INTRODUCTION  

The escalating growth in vehicular traffic has presented an urgent need for innovative solutions in 

traffic management and law enforcement. With an exponential increase in the number of vehicles 

on roads, manual monitoring has become impractical, necessitating the adoption of intelligent 

systems to ensure effective traffic control. This study introduces a comprehensive project focused 

on license plate detection and recognition, leveraging Convolutional Neural Networks (CNN) as a 

powerful deep learning method. The primary objective is to develop a sophisticated system capable 

of automating the identification of vehicle licenses, thereby enhancing traffic flow monitoring. 

This project addresses the challenges associated with real-time operations and complexity, aiming 

to provide a groundbreaking technology for efficient license plate tracking.  

The rapid increase in the number of vehicle on roads has underscored the urgent need for 

sophisticated traffic management solutions, particularly in the realm of automated license plate 

recognition (LPR). This study introduces an innovative approach to LPR that harnesses the power 

of Convolutional Neural Networks (CNNs) in conjunction with the YOLOv8 object detection 

system and a Raspberry Pi single – board computer.  

1.2 MOTIVATION  

The motivation behind this project is rooted in the multifaceted challenges posed by the escalating 

vehicular population on roads. Manual monitoring is not only logistically challenging but also 

prone to inefficiencies, leading to potential law violations, accidents, and increased criminal 

activities. The core motivation is to seek intelligent solutions to address these challenges, 

emphasizing the automation of license plate identification and recognition as a pivotal aspect. By 

integrating cutting-edge technology such as Convolutional Neural Networks (CNN), the project 

aspires to revolutionize traffic management, providing a foundation for efficient and real-time 

license plate tracking. This motivation is grounded in the overarching goal of fostering a safer, 

more organized, and technologically advanced approach to traffic control, aligning with the 

societal need for enhanced safety and security.  

The need for automated LPR systems has become more pressing as urban populations grow and 

vehicle numbers increase. Traditional LPR system often struggle with varying lighting conditions, 



2 

 

plates styles, and occlusions. This project aims to develop a more robust and efficient LPR system 

that can operate effectively in real – time and diverse traffic conditions.  

1.3 OBJECTIVES  

The primary objective of this project is to design, develop, and implement an Automatic License 

Plate Recognition (ANPR) system capable of accurately detecting and recognizing license plates 

from images captured in real-time. Specific objectives include:  

1. Implementing Convolutional Neural Networks (CNN) for effective license plate detection 

and recognition.  

2. Addressing the challenges associated with real-time Noise and tilted images.  

3. Enhancing traffic flow monitoring by automating the identification of vehicle licenses.  

4. Integrating image processing techniques to improve the accuracy and efficiency of license 

plate tracking.  

5. Adhering to engineering design standards to ensure the reliability and performance of the 

ANPR system.  

These objectives collectively aim to contribute to the advancement of intelligent transportation 

systems, fostering improved traffic management and enhancing public safety. The project's success 

will be measured by the system's accuracy, responsiveness, and its ability to operate seamlessly in 

diverse and dynamic traffic environments.  
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CHAPTER 2  

LITERATURE REVIEW  

 

Blending the efficiency of YOLOv8's object detection capabilities with the computational 

constraints and portability offered by Raspberry Pi. This chapter delves into the literature survey 

exploring the integration of these technologies for accurate and real-time vehicle number plate 

recognition. 

2.1 LITERATURE REVIEW 

      In [1], the authors are Dr. Rama Abirami K, Aishwarya Rani, Atul Kumar, Ayush Bhardwaj, 

and Ayush Rungta. The system includes picture acquisition, processing, plate extraction, character 

segmentation, and recognition. And has the potential to improve law enforcement and parking 

management, with further improvements in accuracy and functionality suggested. 

 

      In [2], the authors are Chirag Patel, Dipti Shah, and Atul Patel. Image scissoring, feature 

prominent extraction, and template matching are used. For licence plate detection, various 

algorithms such as colour conversion, thresholding, and fusion are used, while template matching 

is used for fixed-sized letter identification. ANPR algorithms are discussed in terms of image size, 

success rate, and processing time. 

 

      In [3], the authors are J.M. S. V. Ravi Kumar, B. Sujatha, and N. Leelavathi. The document 

discusses an automatic vehicle number plate recognition system that utilises machine learning. The 

system attempts to reduce manual labour, errors, and costs in recognising vehicle number plates 

by using image processing techniques, morphological procedures, and optical character 

recognition. This system improves the efficiency and accuracy of vehicle number plate 

identification using sophisticated technology.  

 

       In [4], the authors are Anubha Jain, Kamlesh Kumawat, and Neha Tiwari. Enhancing ANPR 

with image preprocessing algorithms enhanced recognition rates for HD and hazy photos. This 

study emphasises the importance of image quality in ANPR systems and presents effective 

strategies for improving recognition rates, particularly for blurred images.  
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      In [5], the authors are Asma Iqbal, Mohammed Mujataba Maaz, Syed Amaan Fayaz, and Mohd 

Sohaib Hussain. The project focuses on real-time licence plate identification using Raspberry Pi4, 

OpenCV, and OCR for vehicle security, as well as automation experimentation with image 

segmentation and character recognition within the licence plate recognition framework. 

 

      In [6], the authors are Vaishnav A, Mandot M, Arrospide, Salgado L, and Mohedano R. Utilises 

techniques such as sobel-based vertical edge detectors and sliding window methods to address tilt 

factor by adding an extra layer of vertical projection. It emphasises the importance of robust 

algorithms for non-standardized formats and real-time testing scenarios. 

 

       In [7], the authors are Zhang, Cheang, Varma, Zhu, and Tejas. Cycle GAN and Xception-

based CNN encoders, ConvNet-RNN, Morphological transformation, and CNN different 

methodologies were successful in achieving high accuracy rates, demonstrating the potential of 

advanced technologies in this field. The conclusion emphasises the importance of ongoing research 

and development in vehicle number plate recognition. 

 

       In [8], the authors are Charith Perera, Jithmi Shashirangana, Heshan Padmasiri, and Dulani 

Meedeniya. ALPR systems face issues such as changing perspectives, motion blur, and lighting 

conditions. Datasets differ in complexity and quality, with the Chinese dataset being more difficult 

to identify.   
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2.1.1 Comparison table for various papers on vehicle number plate recognition 

It involves summarizing key attributes such as speed, accuracy, methods, and their applications. 

Paper/Project  Methods/Techniques Speed  Accuracy Remarks/Applications  

YOLOv8 & 

Raspberry Pi 

for Vehicle 

Number 

Plate 

Recognition 

YOLOv8 (deep 

learning), Raspberry 

Pi 

Real-time 

(depends on 

model size) 

High (up 

to 98% in 

optimal 

conditions) 

Optimized for edge 

devices, real-time 

processing, cost-

effective 

Vehicle 

Number Plate 

Detection and 

Recognition 

Techniques: A 

Review 

Various ML/DL 

techniques, OCR, 

traditional image 

processing 

Varies (not 

specified) 

Varies 

(85%-

98%) 

Comprehensive review 

of multiple techniques, 

broader overview 

Real-Time 

Number Plate 

Recognition 

Using 

Raspberry Pi  

Image processing, 

Tesseract OCR 

Real-time (~30 

FPS on Pi 4) 

Medium 

(~85%-

90%) 

Focuses on affordable 

hardware, real-time 

performance 

Automated 

License Plate 

Recognition: 

A Survey on 

Methods and 

Technique  

Machine Learning, 

Deep Learning, OCR 

Varies (not 

specified) 

Varies 

(80%-

95%) 

Survey paper, covers 

various methods and 

their effectiveness 
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Automatic 

Vehicle 

Number Plate 

Recognition 

System Using 

Machine 

Learning  

Machine Learning, 

OCR 

Near real-time High 

(~90%-

95%) 

Focuses on ML 

techniques, practical 

implementation details 

Relevance of 

Automatic 

Number Plate 

Recognition 

System in 

Vehicle Theft 

Detection 

Machine Learning, 

Pattern Recognition 

Near real-time Medium 

(~85%-

90%) 

Emphasizes use in theft 

detection, relevance in 

law enforcement 

Robust 

Automatic 

Recognition 

of Chinese 

License Plate 

in Natural 

Scenes  

Deep Learning, CNN, 

OCR 

Real-time 

(depends on 

implementation) 

High 

(~92%-

97%) 

Focus on robustness in 

varied conditions, 

specifically for Chinese 

plates 

  

Table 1: Comparison with Various papers/projects  

1. YOLOV8 & Raspberry Pi: This combination aims for real-time performance with 

high accuracy, leveraging deep learning models like YOLOv8 optimized for the edge 

devices like Raspberry Pi. This is particularly useful for cost-effective and efficient 

deployments. 

2. General Techniques Review: The review paper provides a broad overview of 

various, techniques, giving a range of speeds and accuracies depending on the method used. 
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3. Real-Time with Raspberry Pi: Similar to the YOLOv8 project, this paper also 

focuses on real-time number plate recognition using Raspberry Pi, highlighting the balance 

between affordability and performance. 

4. Survey on Methods and Techniques: This survey covers a wide range of methods, 

providing insights into their general performance metrics, though specific speed and 

accuracy details are varied.    

5. Machine Learning-based System: These papers emphasize the use of ML for 

number plate recognition, offering high accuracy but may have varying speeds depending 

on implementation specifics. 

6. Theft Detection Relevance: Highlights the application of ANPR system in vehicle 

theft detection, balancing speed and accuracy for practical law enforcement use. 

7. Robustness in Natural Scenes: Focuses on the challenges and solutions for 

recognizing plates in varied and challenging conditions, especially for Chinese plates, 

emphasizing robustness. 

8. Dynamic Environment Detection: Deals with detection in moving and dynamic 

environments, stressing the importance of real-time processing and adaptability.  

The project using YOLOv8 and Raspberry Pi stands out for its real-time capabilities and high 

accuracy, making it a strong contender for practical applications in vehicle number plate 

recognition. The other techniques and papers provide valuable insights and alternative approaches, 

each with its own strengths and considerations depending on the specific requirements and 

constraints of the application. 

 

2.2 PROBLEM STATEMENT 

1. Enhance robustness to noise. 

2. Reduce limitations in recognizing tilted plates. 
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CHAPTER 3 

METHODOLOGY 

3.1 PROPOSED WORK FLOW  

The proposed work flow for the design and development of the is as follows. 

 

 

Figure 1: Proposed Work Flow 

  

Number plate recognition (NPR) is a technology that uses cameras to read and recognize vehicle 

license plates. 

3.1.1 MOVING VEHICLE: This refers to the vehicle whose license plate needs to be 

recognized. The camera mounted on the system captures an image of this moving vehicle. 

3.1.2 RASPBERRY PI: This is a small, single-board computer that is used to process the 

image captured by the camera module. The Raspberry Pi runs software that can detect and 

recognize the license plate in the image. Processor and Memory Raspberry Pi comes in various 

models with different processing power (CPU) and memory (RAM) configurations. Choosing the 

right model depends on the complexity of the YOLOv8 model and desired processing speed.  

Raspberry Pi offers various connectivity options like USB ports, Ethernet, and Wi-Fi. These allow 

for connecting the Pi to a camera module, external storage for the trained model, and potentially a 

network for data transfer. 

Moving Vehicle 

Raspberry Pi 

Camera 
Module 

Dataset 
creation 

Pre-processing 
of dataset

YOLOv8
Number plate 
recogniation 

Display the 
number plate 
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Figure 2: Raspberry Pi  

3.1.3 PI CAMERA MODULE  

RESOLUTION: Camera resolution is important to capture clear and detailed images of license pl

ates, especially in different lighting conditions and at different distances. 

FRAME VALUE: Frame height is important to capture moving vehicles without noise. A speed 

of 30 frames per second (fps) or higher is generally recommended. 

LENS: Lens choice (such as focal length and aperture) affects the field of view and the amount o

f light entering the camera. Lenses with focusing and adequate zoom are ideal for permits of  

different shapes and sizes. 

WEATHERPROOF: Cameras used outdoors must be weatherproof (IP66 or above) to withstand 

harsh conditions such as rain, dust and extreme temperatures. 

INFRARED (IR) FEATURE: The infrared camera is useful for capturing clear images in low 

light or at night 

 

Figure 3: Pi Camera Module  
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3.1.4 DATASET CREATION 

3.1.4.1 Deep Dive into Roboflow: Empowering Your Computer Vision Pipeline 

Roboflow has become a prominent player in the computer vision (CV) landscape, empowering 

developers and enterprises to build and deploy custom vision applications with ease. This report 

delves deeper into Roboflow's functionalities, exploring its strengths and how it simplifies the CV 

development process. 

3.1.4.2 Streamlined Data Annotation: The Foundation of Success 

Roboflow excels in data annotation, the crucial step where data is labeled to train accurate models. 

It supports various annotation types: 

 Image Annotation: Label objects within images using bounding boxes, polygons, or 

keypoints. 

 Video Annotation: Annotate objects across video frames for tasks like object tracking or 

action recognition. 

 Segmentation Annotation: Pixel-wise labeling to define object boundaries, useful for 

tasks like autonomous vehicles or medical imaging. 

 Intuitive Labeling Tools: Users can leverage tools like polygon tools, rectangle tools, and 

brush tools for efficient labeling. 

 Collaboration Features: Team members can collaborate on annotation tasks, ensuring 

consistency and speed. 

 Data Versioning: Track and revert to previous versions of your dataset if needed, 

maintaining control over your data. 

 Advanced Techniques: Utilize features like object tracking for video annotation or 

leverage pre-defined shapes for faster labeling. 

3.1.4.3 Building Custom Models: Unleashing the Power of AI 

Roboflow empowers users to train custom computer vision models tailored to their specific needs. 

Key features include: 
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 Supported Frameworks: Train models using popular deep learning frameworks like 

TensorFlow and PyTorch. 

 Pre-trained Models & Transfer Learning: Leverage pre-trained models like YOLOv8 

or EfficientDet for faster training by fine-tuning them on your data. 

 Custom Model Training: Train models from scratch using your prepared datasets for 

scenarios where pre-trained models aren't suitable. 

 Performance Monitoring: Monitor metrics like accuracy and loss during training to gauge 

model performance and identify areas for improvement. 

 Versioning & Experiment Management: Experiment with different training 

configurations and easily compare performance across versions. 

3.1.4.4 Deployment Made Easy: From Cloud to Edge 

Once your model is trained, Roboflow facilitates seamless deployment across various platforms: 

 Cloud Deployment: Deploy models for real-time inference on cloud platforms like AWS 

or Google Cloud. 

 Edge Deployment: Optimize models for deployment on edge devices with limited 

resources, like Raspberry Pi, for on-device inference. 

 Model Optimization: Reduce model size using techniques like quantization for efficient 

deployment on edge devices. 

 Web Application Integration: Integrate models with web applications using Roboflow's 

API for user interaction. 

 Mobile App Development: Convert models for mobile deployment, enabling on-device 

inference within mobile applications. 

3.1.4.5 Roboflow Universe: A Rich Ecosystem for Collaboration 

Roboflow fosters a collaborative environment through its Universe: 

 Pre-built Datasets and Models: Explore a vast library of publicly available datasets and 

pre-trained models, saving time and resources. 
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 Tutorials and Documentation: Access comprehensive tutorials and documentation to 

learn about computer vision concepts and master Roboflow functionalities. 

 Community Forum: Connect with other developers, ask questions, share projects, and 

contribute to the growth of the CV community. 

3.1.4.6 Beyond the Core: Applications and Use Cases 

Roboflow's versatility empowers users across various domains: 

 Object Detection: Classify and localize objects within images or videos, applicable for 

tasks like traffic sign recognition or anomaly detection in security systems. 

 Image Classification: Categorize images based on their content, useful for tasks like 

product categorization in e-commerce or medical image analysis. 

 Image Segmentation: Extract pixel-level information for tasks like self-driving car 

obstacle detection or medical image segmentation for disease diagnosis. 

 Custom Projects: The possibilities are endless! Explore how developers are leveraging 

Roboflow for unique applications in various industries. 

               

Figure 4: Roboflow Dataset 

Conclusion: Roboflow - Your Partner in Building Intelligent Systems 

Roboflow empowers developers and enterprises to build and deploy custom computer vision 

applications with a user-friendly interface, robust functionalities, and a collaborative environment. 

By streamlining data annotation, facilitating model training, and offering diverse deployment 

options, Roboflow accelerates the development of intelligenst systems for real-world applications. 
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As computer vision continues to evolve, Roboflow remains at the forefront, providing the tools 

and resources necessary to harness the power of AI for innovative solutions. The ISO/IEC 15444 

Series, is satisfied. 

3.1.5 PRE-PROCESSING OF DATASET  

In pre-processing od dataset the vehicle number plate recognition using YOLOv8 and Raspberry 

Pi, managing the quality of the dataset through denoising and controlled noising is crucial for 

enhancing model performance and robustness. 

3.1.5.1 NOISING: Introduction controller noise into the dataset (noising) can be equally 

import for important for improving the robustness of the model. This involves adding various types 

of noise to the images to simulate real-world conditions,such as:  

 

Figure 5: Noisy Image  
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3.1.5.2 DENOISING: Denoising refers to the process of removing noise form the dataset to 

import the clarity and quality of the images. For vehicle number plate recognition, this can involve 

techniques such as: 

 Filtering: Using filter (e.g., Gaussian, Median) to smooth images and random noise. 

 Morphological Operations:  Applying operations like erosion and dilation to clean 

up small noise artifacts. 

 Advanced Algorithms: Leveraging deep learning-based denoising autoencoders to 

effectively reduce noise while preserving import features. 

Denoising helps in creating a cleaner and more accurate dataset, which can significantly enhance 

the detection and recognition capabilities of YOLOv8 models when deployed on Raspberry Pi. 

This leads to better generalization and higher accuracy in real-world applications.  

 

Figure 6: Denoised Image 

 Gaussian Noise: Adding Gaussian noise to simulate poor lighting conditions or sensor 

imperfections. 
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To verify the quality of images using ISO.19264 standards. We have specifically used 2 test 

targets. 

1. Noise  

2. Sharpness & Clarity  

1.Noise: We have considered the Gaussian noise & our ALPR output doesn’t affect our 

recognition of LP level. 

2.Sharpness & Clarity: Ensuring that images is Sharpe enough to read the characteristics of 

the license number plate. 

Implementation: Integrating these processes into the data preprocessing pipeline involves: 

1. Data Augmentation Tools: Utilizing libraries like OpenCV or PIL for basic 

denoising and noising tasks. 

2. Custom Scripts: Developing custom scripts to apply advanced techniques or to 

add specific types of noise. 

3. Training Strategy: Combining clean and noisy datasets during training to 

improve the model’s robustness and generalization. 

By systematically applying denoising and controlled noising techniques, the synergy between 

YOLOv8 and Raspberry Pi for vehicle number plate recognition can be greatly enhanced. This 

ensures that the models are not only accurate but also robust, providing reliable performance in 

varied and unpredictable real-world environments. 
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3.1.8 YOLOV8 ARCHITECTURE    

 

Figure 7: YOLOv8 Architecture 

In the context of Automatic License Plate Recognition (ANPR) systems, the system architecture 

involving YOLOv8 (You Only Look Once version 8) plays a critical role in enabling accurate and 

real-time object detection. YOLOv8 is a state-of-the-art deep learning model designed for object 

detection, known for its speed and efficiency. The architecture of YOLOv8 follows a single-stage 

approach, making it particularly well-suited for real-time applications.  

The YOLOv8 architecture is built upon a convolutional neural network (CNN) that divides the 

input image into a grid and predicts bounding boxes and class probabilities directly. Here are key 

components and concepts within the YOLOv8 architecture:  
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Backbone Network: YOLOv8 utilizes a powerful backbone network, often based on architectures 

like CSPDarknet53 or YOLOv4-CSP, to extract hierarchical features from the input image. These 

features are crucial for understanding context and details in the image.  

Feature Pyramid: YOLOv8 incorporates a feature pyramid that captures multi-scale 

representations of objects within the image. This allows the model to detect objects of varying 

sizes and scales effectively.  

Detection Head: The detection head is responsible for predicting bounding boxes and class 

probabilities. YOLOv8 employs anchor boxes, which are predefined bounding box sizes, to 

improve the accuracy of object localization.  

Loss Function: YOLOv8 employs a comprehensive loss function that combines localization loss, 

confidence loss, and classification loss. This enables the model to learn and improve its predictions 

during training.  

Output Format: The final output of YOLOv8 is a set of bounding boxes, each associated with a 

class label and a confidence score. This output is obtained efficiently in a single forward pass 

through the network, making YOLOv8 suitable for real-time applications.  

Model Variants: YOLOv8 comes in different variants, such as YOLOv8-S, YOLOv8-M, 

YOLOv8-L, and YOLOv8-X, each offering a trade-off between speed and accuracy. This allows 

users to choose a variant based on their specific requirements.  

3.1.8.1 Integration of YOLOv8 and Raspberry Pi  

In the development of an efficient Automatic License Plate Recognition (ANPR) system, the 

integration of YOLOv8 and Raspberry Pi serves as a pivotal aspect of the overall system 

architecture. YOLOv8, renowned for its real-time object detection capabilities, is seamlessly 

integrated with the Raspberry Pi, a compact and versatile single-board computer. The synergy 

between these two components harnesses the strengths of YOLOv8's advanced object detection 

algorithms and the Raspberry Pi's capability for on-device image capture and processing.  

The integration begins with the installation of the YOLOv8 framework on the Raspberry Pi, 

establishing a foundation for robust object detection. The YOLOv8 repository is cloned from 

GitHub, providing access to the latest version of the model. To enhance the accuracy of object 
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detection, pre-trained YOLOv8 weights are downloaded, enabling the model to identify and 

localize various objects within images.  

Simultaneously, the Raspberry Pi is configured to capture images using its Camera Module. The 

physical connection between the Camera Module and the CSI port on the Raspberry Pi board is 

established, ensuring a reliable link for real-time image acquisition. The camera interface is 

enabled through the Raspberry Pi Configuration tool, facilitating seamless communication 

between the Raspberry Pi and the Camera Module.  

This integrated setup combines the hardware capabilities of the Raspberry Pi for image capture 

with the advanced object detection prowess of YOLOv8. The YOLOv8 algorithm processes the 

images captured by the Raspberry Pi in real-time, detecting objects with impressive accuracy. This 

collaborative approach lays the groundwork for subsequent stages of the ANPR system, such as 

license plate localization, character segmentation, and recognition.  

By unifying YOLOv8 and Raspberry Pi, the system architecture achieves a cohesive and efficient 

workflow. The integration ensures that real-time image capture and on-device object detection 

work in tandem, making the system well-suited for applications where immediate processing and 

recognition of license plates are crucial, such as traffic monitoring and law enforcement.  

3.1.8.2 Processing Unit Specifications 

CPU/GPU: Running YOLOv8 models requires CPU or GPU power to perform calculations. The 

Raspberry Pi 4, with its quad-core CPU and optional GPU acceleration, is an option. 

MEMORY (RAM): Sufficient RAM (at least 4 GB) is required to ensure proper functioning of   

graphics and display models. 

STORAGE: Sufficient storage space (SSD or fast SD card) is required to store videos, sample     

files and results. A minimum of 32 GB is recommended with extended resolutions. 

3.1.8.3 Power Supply Considerations 

STABLE POWER: Make the power stable and reliable, prevent interference. Use an uninterrupti

ble power supply (UPS) when necessary. 

ENERGY CONSUMPTION: The system must be energy efficient, especially for remote or solar 

installations. Raspberry Pi is known for its low power consumption, making it the best choice. 
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3.1.8.4 YOLOv8 Object Detection  

Moving on to the next step, the YOLOv8 object detection framework is integrated into the project. 

This involves cloning the YOLOv8 repository from GitHub, providing access to the latest version 

of the object detection model. To enhance the accuracy of the model, pre-trained YOLOv8 weights 

are downloaded, which serve as a foundation for detecting various objects within images. The 

actual object detection process is executed using YOLOv8 on the images captured by the 

Raspberry Pi Camera Module.  

This cohesive approach combines hardware setup, software configuration, and cutting-edge object 

detection technology to lay the groundwork for a robust image capture and detection system. The 

subsequent steps in the project will build upon this foundation, incorporating advanced techniques 

for license plate localization, character segmentation, and character recognition, ultimately 

contributing to the development of an efficient Automatic License Plate Recognition (ANPR) 

system. 

 

Finger 8: Object Detection 
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3.1.8.5 Vehicle Number Plate Recognition  

In the progression of the ANPR (Automatic Number Plate Recognition) system, the third step 

involves License Plate Localization. The objective is to implement algorithms capable of 

processing the output generated by YOLOv8, extracting the region of interest (ROI) that 

encompasses the detected license plate.  

 

Figure:9 Vehicle Number Plate Recognition  

The algorithm design consists of several key components:  

• Filter by Class Label: Identify bounding boxes with the class label specific to license plates. 

This step serves to filter out extraneous objects detected by YOLOv8.  

• Confidence Thresholding: Apply a confidence threshold to eliminate bounding boxes with 

low confidence scores, ensuring that only predictions with high confidence are considered.  

• Non-Maximum Suppression (NMS): Implement non-maximum suppression to remove 

redundant bounding boxes, preventing overlap and refining the set of detected license 

plates.  
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• Aspect Ratio Filtering: Filter bounding boxes based on aspect ratio, acknowledging that 

license plates typically exhibit a specific rectangular shape. This aids in reducing false 

positives.  

• Size Filtering: Consider filtering bounding boxes based on size, taking into account the 

typical dimensions of license plates. This step helps in eliminating outliers.  

• Upon obtaining the final set of bounding boxes, the subsequent task is the extraction of 

Regions of Interest (ROIs) from the original image. This involves cropping the image based 

on the coordinates of the bounding box and, optionally, making margin adjustments to 

encompass the entire license plate along with some surrounding context.  

• As an optional post-processing step, techniques such as image enhancement (e.g., 

histogram equalization) and noise reduction can be applied to refine the quality of the 

extracted regions.  

• The output of the License Plate Localization step is a collection of ROIs, each 

encapsulating a detected license plate. These ROIs are then fed into the next stage of the 

ANPR pipeline: Character Segmentation 
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3.1.9 Character Segmentation  

In the subsequent step, Character Segmentation aims to isolate individual characters from the 

extracted license plate images. The segmentation algorithm entails converting the images to 

grayscale for simplicity and reduced computational complexity. A two-dimensional filter is 

applied for noise reduction and edge preservation, followed by the utilization of Canny's Edge 

Detection algorithm to accurately identify edges in the license plate image.  

The output of Character Segmentation comprises a set of segmented characters, each isolated from 

the license plate. These segmented characters are subsequently fed into the third and final stage of 

the ANPR pipeline: Character Recognition.  

 

Finger 10: Character Segmentation 

3.1.10 Character Recognition  

In the Character Recognition step, the focus is on recognizing the segmented characters using 

Convolutional Neural Network (CNN) technology. The recognition algorithm involves 

implementing or utilizing pre-trained CNN models for character extraction and recognition. These 

models can be trained on a labeled dataset containing images of individual characters, or pretrained 

models can be fine-tuned for specific recognition tasks.  

In summary, the integrated approach of License Plate Localization, Character Segmentation, and 

Character Recognition forms a comprehensive ANPR system, capable of accurately extracting and 

interpreting license plate information from captured images.  
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CHAPTER 4 

ACHIEVEMENTS AND SYSTEM CAPABILITIES 

The Achievements and System Capabilities of this project is the development of a robust and 

efficient Automatic Number Plate Recognition (ANPR) system that seamlessly integrates cutting-

edge technologies for image capture, object detection, and character recognition. Upon successful 

implementation of the proposed methodology, the system is anticipated to accurately and swiftly 

identify license plates from images captured using a Raspberry Pi Camera Module. The project 

aims to achieve a high level of precision in license plate localization through the utilization of 

YOLOv8 for object detection, followed by character segmentation and recognition employing 

Convolutional Neural Network (CNN) technology. The ultimate result is a streamlined pipeline 

that can process images, extract license plates, segment individual characters, and recognize 

alphanumeric information with a high degree of accuracy. The ANPR system is expected to 

contribute significantly to traffic automation, law enforcement, and security applications by 

providing a robust solution for efficient and real-time recognition of license plate information. The 

successful execution of this project is poised to demonstrate the feasibility and effectiveness of the 

proposed methodology in the context of Automatic License Plate Recognition.  

4.1 Overview of Functionality  

The expected functionality of the integrated YOLOv8 and Raspberry Pi system for vehicle number 

plate recognition is to provide a reliable and efficient solution for real – time LPR. The system 

should be capable of detecting and recognizing number plates under various conditions, including 

different lighting scenarios, plate orientations, and vehicle speeds.   

4.2 Performance Benchmarks  

The performance of the system will be benchmarked against industry standards for LPR systems. 

Key performance indicators will include accuracy rate, detection speed, and the system’s ability 

to handle multiple plates simultaneously. The goal is to achieve a balance between high accuracy 

and fast processing times, ensuring the system’s viability for real – time applications. 

4.3 System Robustness  

The expected outcome also includes a robust system that can handle challenges such as plate 

variations, occlusions, and environmental factors. The system’s design will incorporate 
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mechanisms to ensure consistent performance, even in less than ideal conditions, making it suitable 

for deployment in diverse traffic environments. 

4.4 User Interface and Integration  

The system will feature a user – friendly interface for easy interaction and will be designed for 

seamless integration with existing traffic management systems. This will allow for the smooth 

implementation of the LPR system into current operational workflows, enhancing overall traffic 

management capabilities.  

4.5 Potential Impact and Applications  

The successful implementation of the YOLOv8 and Raspberry Pi LPR system is expected to have 

a significant impact on traffic management and security. Potential applications include automated 

toll collection, parking enforcement, access control, and vehicle tracking for law enforcement 

agencies. The system’s ability to operate accurately and in real – time will contribute to improved 

operational efficiency and public safety.  

4.6 Pascal Dataset to Yolov8 

The PASCAL VOC (Visual Object Classes) dataset is a popular choice for training object detection 

models like YOLOv8. Luckily, converting your PASCAL VOC data for use with YOLOv8 is a 

straightforward process. Here's what you need to do: 

Data Format Conversion: 

PASCAL VOC typically uses XML files for annotations, while YOLOv8 expects data in a text 

(.txt) format. This text format specifies bounding boxes for each object in an image along with its 

class label. 

There are two main approaches to achieve this conversion: 

Manual Conversion: You can manually convert the information from the XML files to the 

YOLOv8 format. This can be time-consuming for large datasets. 

Conversion Tools: Several tools can automate this process for you. Here are a couple of options: 
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Roboflow: This online platform offers a free public plan that allows you to upload your PASCAL 

VOC data and convert it to the YOLOv8 format [1]. Roboflow also handles oriented bounding 

boxes if your dataset uses them. 

After converting your annotations, you'll have the PASCAL VOC data formatted appropriately for 

training your YOLOv8 model. The PASCAL Visual Object Classes Standard is Verified. 

 

Figure11: Object Detected 
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CHAPTER 5 

RESULT AND DISCUSSIONS 

 

5.1 Tools and Libraries Used  

Some of the tools used are Anaconda Navigator, Jupyter notebook. These tools make the execution 

of model in a fast manner 

5.1.1 Anaconda 

Anaconda Navigator is a desktop Graphical User Interface (GUI) included in Anaconda 

distribution that allows you to launch applications and easily manage conda packages, 

environments, and channels without using command-line commands. Navigator can search for 

packages on Anaconda Cloud or in a local Anaconda Repository. It is available for Windows, 

macOS, and Linux. In order to run, many scientific packages depend on specific versions of other 

packages. Data scientists often use multiple versions of many packages and use multiple 

environments to separate these different versions. The command-line program conda is both a 

package manager and an environment manager. This helps data scientists ensure that each version 

of each package has all the dependencies it requires and works correctly. Navigator is an easy, 

point-and-click way to work with packages and environments without needing to type conda 

commands in a terminal window. You can use it to find the packages you want, install them in an 

environment, run the packages, and update them – all inside Navigator. 

5.1.2 Jupyter Notebook 

Jupyter is a nonprofit organization created to develop open-source software, open-standards, and 

services for interactive computing across dozens of programming languages. Project Jupyter 

supports execution environments in several dozen languages. Project Jupyter’s name is a reference 

to the three core programming languages supported by Jupyter, which are Julia, Python and R, 

notebooks recording the discovery of the moons of Jupiter. Project Jupyter has developed and 

supported the interactive computing products Jupyter Notebook, JupyterHub, and JupyterLab, the 

next-generation version of Jupyter Notebook. The Jupyter Notebook is an open-source web 

application that allows you to create and share documents that contain live code, equations, 
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visualizations and narrative text. Uses include: data cleaning and transformation, numerical 

simulation, statistical modeling, data visualization, machine learning, and much more. 

5.1.3 OpenCV 

OpenCV (Open-Source Computer Vision Library) is an open-source computer vision and machine 

learning software library. OpenCV was built to provide a common infrastructure for computer 

vision applications and to accelerate the use of machine perception in the commercial products. 

Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize and modify the 

code. The library has more than 2500 optimized algorithms, which includes a comprehensive set 

of both classic and state-of-the-art computer vision and machine learning algorithms. These 

algorithms can be used to detect and recognize faces, identify objects, classify human actions in 

videos, track camera movements, track moving objects, extract 3D models of objects, produce 3D 

point clouds from stereo cameras, stitch images together to produce a high resolution image of an 

entire scene, find similar images from an image database, remove red eyes from images taken 

using flash, follow eye movements, recognize scenery and establish markers to overlay it with 

augmented reality, etc. The library is used extensively in companies, research groups and by 

governmental bodies. 

5.1.4 TensorFlow 

Amazon have actively contributed to the development of Keras. It has an amazing industry 

interaction, and it is used in the development of popular firms likes Netflix, Uber, Google, etc. 

TensorFlow is an open-source library for fast numerical computing. It was created and is 

maintained by Google and released under the Apache 2.0 open-source license. The API is 

nominally for the Python programming language, although there is access to the underlying C++ 

API. Unlike other numerical libraries intended for use in Deep Learning like Theano, TensorFlow 

was designed for use both in research and development and in production systems, not least Rank 

Brain in Google search and the fun Deep Dream project. It can run on single CPU systems, GPUs 

as well as mobile devices and large-scale distributed systems of hundreds of machines. 
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5.2 Accuracy Graphs  

Accuracy graphs plotted against different dataset showed consistent high performance of the 

system across various conditions. 

 

Figure 12: Accuracy Graph 

 The x-axis of the graph represents the number of epochs, or times the model has iterated 

over the entire training dataset.  

 The y-axis represents the model loss. There are two lines, likely one for the training loss 

and one for the testing loss. As the number of epochs increases, the loss typically decreases. 

This indicates that the model is learning to perform better on the task of vehicle number 

plate recognition.  

 The goal is to train a model that can accurately detect license plates in images or videos 

captured by a Raspberry Pi camera. The Raspberry Pi is a low-cost, single-board computer 

that can be used for a variety of purposes, including computer vision tasks. 

5.3 Loss Graphs  

Loss graphs indicated that the system’s learning process was stable, with minimal loss during the 

training phase.    
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Figure 13: Loss Graph 

 The x-axis of the graph represents the number of epochs, or times the model has iterated 

over the entire training dataset. 

 The y-axis represents the model loss. There are two lines, one for the training loss (training 

loos) and one for the validation loss (val loos). As the number of epochs increases, the loss 

typically decreases. This indicates that the model is learning to perform better on the task 

of vehicle number plate recognition.  

 The goal is to train a model that can accurately detect license plates in images or videos 

captured by a Raspberry Pi camera. The Raspberry Pi is a low-cost, single-board computer 

that can be used for a variety of purposes, including computer vision tasks. 

 

Figure 14: Stress and Load Test 
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 Load Test: A load test simulates a typical user load on an application to measure its 

performance under normal conditions. The y-axis (Users) likely represents the number of 

virtual users simulating real users interacting with the system. The x-axis (Time ->) 

represents time. 

 Stress Test: A stress test pushes an application beyond its normal operating capacity to 

see how it handles extreme conditions. The y-axis likely represents the number of virtual 

users, but at a much higher volume than would be expected under normal use. The x-axis 

represents time. 

The graph illustrates that both the load test and stress test start with a ramp-up period where the 

number of virtual users gradually increases. This is followed by a steady state period where the 

number of virtual users is held constant. Finally, there is a ramp-down period where the number 

of virtual users is gradually decreased. 

The key difference between the two tests is the number of virtual users in the steady state period. 

The load test uses a number of users that is representative of normal operation, while the stress test 

uses a much higher number of users. 

The purpose of a load test is to identify performance bottlenecks before an application is deployed 

to production. The purpose of a stress test is to determine the breaking point of an application and 

to identify any potential failures that could occur under extreme load. 
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Test Case 

description 

Input Expected 

output 

Output Status 

Video is 

given as 

input for 

recognizing 

characters 

of license 

plate 
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7576 

 

 

 

 

 

Pass 

Video is 

given as 

input for 

recognizing 

characters 

of license 

plate 

 

 

 

 

 

AP 7 AG 

2020 

 

 

 

 

 

 

Pass 

Video is 

given as 

input for 

recognizing 

characters 

of license 

plate 

 

 

 

 

AP 16 

CB 9979 

 

 

 

 

 

 

Pass 

Video is 

given as 

input for 

recognizing 

characters 

of license 

plate 

 

 

 

 

 

AP 29 Z 

3777 

 

 

 

 

 

 

Fail 

                                                      Table 2: Output Status  
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5.4 Recognition Results  

The system successfully recognized license plates in real – time operation and ability to handle 

complex traffic scenarios. 

Figure 15: Recognition Results 

A license plate, also known as a number plate or registration plate, is a flat plate attached to a 

motor vehicle or trailer for identification purposes. The format of license plates varies by region, 

but they typically contain letters and numbers that are unique to the vehicle. 

5.5 Advantages  

The system’s main advantages include its robustness, real – time operation, and ability to handle 

complex traffic scenarios. 

 Real-time Processing: YOLOv8 excels in speed and efficiency, making it ideal for real-time 

license plate recognition on resource-constrained devices like Raspberry Pi. This allows for 

immediate processing and reaction to captured license plates. 
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 Accuracy: Deep learning models like YOLOv8 can achieve high accuracy in license plate 

recognition, especially when trained on a comprehensive dataset that captures various lighting 

conditions, orientations, and distances. 

 Low-cost Platform: Raspberry Pi is a cost-effective platform for deploying ANPR systems. 

This makes the technology accessible for a wider range of applications compared to using high-

end computers. 

 Customization: YOLOv8 offers customization options. You can fine-tune the model on a 

specific dataset of license plates from a particular region to improve recognition accuracy for 

local variations in size, color, and font. This allows for targeted performance in specific  

5.6 Limitations 

While YOLOv8 on Raspberry Pi offers a compelling solution for ANPR, there are some limitations 

to consider. 

 Computational limitations: Raspberry Pi has limited processing power compared to high-end 

computers. This can impact the frame rate (FPS) achieved, potentially leading to missed 

detections in fast-moving traffic. 

 

5.7 Applications  

The LPR system can be applied in various setting, including parking lots, toll booths, and law 

enforcement for vehicle tracking and identification 

Leveraging YOLOv8's object detection capabilities and Raspberry Pi's affordability, this system 

offers a versatile solution for Vehicle Number Plate Recognition (VNPR) across various 

applications. Here are some key areas where this technology can be implemented: 

Traffic Management: 

 Automated Toll Collection: YOLOv8 can identify vehicles approaching toll booths, 

enabling automatic toll calculation and payment deduction based on license plate 
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information. This eliminates the need for manual toll collection, improving traffic flow 

and reducing congestion. 

 Traffic Monitoring: ANPR systems can track traffic volume and analyze vehicle 

movement patterns. This data can be used to optimize traffic light timing, identify 

bottlenecks, and improve overall traffic flow management. 

 Parking Management: ANPR systems can automate vehicle entry and exit in parking 

lots. License plates can be linked to pre-registered accounts for automatic fee collection 

or access control. 

Law Enforcement: 

 Stolen Vehicle Detection: ANPR systems can be integrated with databases of stolen 

vehicles. When a camera captures a license plate matching a stolen vehicle, authorities 

can be immediately alerted, facilitating faster recovery. 

 Traffic Violation Enforcement: ANPR systems can be used to automate speeding ticket 

issuance or identify vehicles violating traffic regulations like running red lights. This can 

improve road safety and deter traffic violations. 

 Border Security: ANPR systems can be deployed at border checkpoints to monitor 

incoming and outgoing vehicles, assisting with border security efforts. 

Security and Access Control: 

 Gated Communities: ANPR systems can control access to gated communities by 

recognizing authorized vehicles and denying entry to unauthorized ones. This enhances 

security and resident safety. 

 Parking Lot Access Control: Similar to parking management, ANPR can be used to 

restrict access to specific parking areas based on pre-approved license plates. 

 Restricted Area Access: ANPR systems can be used to control access to sensitive areas 

or private property by identifying authorized vehicles. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

 

6.1 Conclusion  

This project successfully developed an LPR system that combines YOLOv8 object detection with 

a Raspberry Pi for real – time processing. The system’s performance exceeded expectations, 

proving its effectiveness in diverse traffic conditions.The synergy between YOLOv8 and 

Raspberry Pi presents a compelling solution for vehicle number plate recognition . YOLOv8's real-

time object detection capabilities, combined with Raspberry Pi's affordability and compact form 

factor, create a powerful and versatile platform for ALPR applications. the combination of 

YOLOv8 and Raspberry Pi offers a promising approach for developing efficient and cost-effective 

ALPR solutions. With continuous advancements in both technologies, we can expect even more 

innovative applications to emerge in the future. 

6.2 Future Scope  

Future work could include enhancing the system’s capabilities to recognize plates from different 

countries, improving its performance in extreme weather conditions, and integrating it with larger 

traffic management systems. The synergy between YOLOv8 and Raspberry Pi presents significant 

potential for the future of vehicle number plate recognition. As advancements in deep learning 

models like YOLOv8 continue, their deployment on edge devices such as Raspberry Pi can 

revolutionize real-time applications. Future improvements in model optimization could lead to 

even faster and more accurate number plate recognition systems that are both cost-effective and 

energy-efficient. This technology could be widely adopted in smart cities for traffic monitoring, 

automated toll collection, and law enforcement to enhance public safety and operational efficiency. 

Additionally, with ongoing enhancements in hardware capabilities and edge AI frameworks, the 

integration of YOLOv8 on Raspberry Pi could extend to other domains, enabling comprehensive 

and scalable smart surveillance solutions. 
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APPENDIX 

SOURCE CODE 

import hydra 

import torch 

from ultralytics.yolo.engine.predictor import BasePredictor 

from ultralytics.yolo.utils import DEFAULT_CONFIG, ROOT, ops 

from ultralytics.yolo.utils.checks import check_imgsz 

from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box 

import easyocr 

import cv2 

 

# Initialize the EasyOCR reader with English language support and GPU processing 

reader = easyocr.Reader(['en'], gpu=True) 

 

# Function to perform OCR on a cropped image based on given coordinates 

def ocr_image(img, coordinates): 

    x, y, w, h = int(coordinates[0]), int(coordinates[1]), int(coordinates[2]), int(coordinates[3]) 

    img = img[y:h, x:w]  # Crop the image to the bounding box coordinates 

    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)  # Convert the cropped image to 

grayscale 

    result = reader.readtext(gray)  # Perform OCR on the grayscale image 

    text = "" 

 

    # Process OCR results to extract text 
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    for res in result: 

        if len(result) == 1: 

            text = res[1] 

        if len(result) > 1 and len(res[1]) > 6 and res[2] > 0.2: 

            text = res[1] 

     

    return str(text) 

 

# Custom predictor class extending BasePredictor from YOLO 

class DetectionPredictor(BasePredictor): 

 

    # Method to get an annotator for drawing boxes and labels on images 

    def get_annotator(self, img): 

        return Annotator(img, line_width=self.args.line_thickness, example=str(self.model.names)) 

 

    # Method to preprocess the input image before inference 

    def preprocess(self, img): 

        img = torch.from_numpy(img).to(self.model.device)  # Convert numpy array to torch tensor 

and move to the correct device 

        img = img.half() if self.model.fp16 else img.float()  # Convert to half precision if model uses 

fp16 

        img /= 255  # Normalize pixel values to the range 0-1 

        return img 

 

    # Method to postprocess the predictions after inference 
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    def postprocess(self, preds, img, orig_img): 

        # Apply Non-Max Suppression to filter out overlapping bounding boxes 

        preds = ops.non_max_suppression(preds, self.args.conf, self.args.iou, 

agnostic=self.args.agnostic_nms, max_det=self.args.max_det) 

 

        # Scale the bounding boxes back to the original image size 

        for i, pred in enumerate(preds): 

            shape = orig_img[i].shape if self.webcam else orig_img.shape 

            pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() 

 

        return preds 

 

    # Method to write results and draw bounding boxes on images 

    def write_results(self, idx, preds, batch): 

        p, im, im0 = batch 

        log_string = "" 

        if len(im.shape) == 3: 

            im = im[None]  # Expand dimensions if batch size is 1 

        self.seen += 1 

        im0 = im0.copy() 

 

        if self.webcam:  # Handle case for webcam input 

            log_string = f"{idx}: " 

            frame = self.dataset.count 

        else: 
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            frame = getattr(self.dataset, 'frame', 0) 

 

        self.data_path = p 

        self.txt_path = str(self.save_dir / 'labels' / p.stem) + (f'_{frame}' if self.dataset.mode == 

'image' else '') 

        log_string += '%gx%g ' % im.shape[2:]  # Log image size 

        self.annotator = self.get_annotator(im0) 

        det = preds[idx] 

        self.all_outputs.append(det) 

        if len(det) == 0: 

            return log_string 

        for c in det[:, 5].unique(): 

            n = (det[:, 5] == c).sum()  # Count detections per class 

            log_string += f"{n} {self.model.names[int(c)]}{'s' * (n > 1)}, " 

 

        # Write detection results to file 

        gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # Normalization gain for width and height 

        for *xyxy, conf, cls in reversed(det): 

            if self.args.save_txt:  # Save bounding box coordinates to a text file 

                xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() 

                line = (cls, *xywh, conf) if self.args.save_conf else (cls, *xywh)  # Format line for saving 

                with open(f"{self.txt_path}.txt", 'a') as f: 

                    f.write(('%g ' * len(line)).rstrip() % line + '\n') 

 

            # Add bounding box to the image 
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            if self.args.save or self.args.save_crop or self.args.show: 

                c = int(cls)  # Integer class 

                label = None if self.args.hide_labels else ( 

                    self.model.names[c] if self.args.hide_conf else f"{self.model.names[c]} {conf:.2f}" 

                ) 

                text_ocr = ocr_image(im0, xyxy)  # Perform OCR on the detected region 

                label = text_ocr 

                self.annotator.box_label(xyxy, label, color=colors(c, True)) 

                if self.args.save_crop: 

                    imc = im0.copy() 

                    save_one_box(xyxy, imc, file=self.save_dir / 'crops' / self.model.names[c] / 

f"{self.data_path.stem}.jpg", BGR=True) 

   return log_string 

 

# Hydra configuration for running the prediction 

@hydra.main(version_base=None,config_path=str(DEFAULT_CONFIG.parent), 

config_name=DEFAULT_CONFIG.name) 

def predict(cfg): 

    cfg.model = cfg.model or "yolov8n.pt"  # Set default model if not specified 

    cfg.imgsz = check_imgsz(cfg.imgsz, min_dim=2)  # Check and adjust image size 

    cfg.source = cfg.source if cfg.source is not None else ROOT / "assets"  # Set default source if 

not specified 

    predictor = DetectionPredictor(cfg) 

    predictor() 
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if __name__ == "__main__": 

    predict()  # Run the prediction 

 


